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1

Introduction

1.1 Two Fundamental Questions

There are two fundamental questions that should be answered before buying,
and even more before reading, a book:

e Why should one read the book?
e What is the book about?

This is the reason why this section, the first of the whole text, proposes some
motivations for potential readers (Section 1.1.1) and an overall description of
the content (Section 1.1.2). If the answers are convincing, further information
can be found in the rest of this chapter: Section 1.2 shows in detail the struc-
ture of the book, Section 1.3 presents some features that can help the reader
to better move through the text, and Section 1.4 provides some reading tracks
targeting specific topics.

1.1.1 Why Should One Read The Book?

One of the most interesting technological phenomena in recent years is the
diffusion of consumer electronic products with constantly increasing acquisi-
tion, storage and processing power. As an example, consider the evolution of
digital cameras: the first models available in the market in the early nineties
produced images composed of 1.6 million pixels (this is the meaning of the
expression 1.6 megapizels), carried an onboard memory of 16 megabytes, and
had an average cost higher than 10,000 U.S. dollars. At the time this book is
being written, the best models are close to or even above 8 megapixels, have
internal memories of one gigabyte and they cost around 1,000 U.S. dollars. In
other words, while resolution and memory capacity have been multiplied by
around five and fifty, respectively, the price has been divided by more than ten.
Similar trends can be observed in all other kinds of digital devices including
videocameras, cellular phones, mp3 players, personal digital assistants (PDA),
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etc. As a result, large amounts of digital material are being accumulated and
need to be managed effectively in order to avoid the problem of information
overload.

The same period has witnessed the development of the Internet as ubig-
uitous source of information and services. In the early stages (beginning of
the nineties), the webpages were made essentially of text. The reason was
twofold: on the one hand the production of digital data different from simple
texts was difficult (see above); on the other hand the connections were so
slow that the download of a picture rather than an audio file was a painful
process. Needless to say, how different the situation is today: multimedia ma-
terial (including images, audio and videos) can be not only downloaded from
the web from a computer, but also through cellular phones and PDAs. As a
consequence, the data must be adapted to new media with tight hardware and
bandwidth constraints.

The above phenomena have led to two major challenges for the scientific
community:

e Data analysis: it is not possible to take profit from large amounts of data
without effective approaches for accessing their content. The goal of data
analysis is to extract the data content, i.e. any information that constitutes
an asset for potential users.

e Data processing: the data are an actual asset if they are accessible every-
where and available at any moment. This requires representing the data
in a form that enables the transmission through physical networks as well
as wireless channels.

This book addresses the above challenges, with a major emphasis on the analy-
sis, and this is the main reason for reading this text. Moreover, even if the
above challenges are among the hottest issues in current research, the tech-
niques presented in this book enable one to address many other engineering
problems involving complex data: automatic reading of handwritten addresses
in postal plants, modeling of human actions in surveillance systems, analysis
of historical documents archives, remote sensing (i.e. extraction of information
from satellite images), etc. The book can thus be useful to almost any person
dealing with audio, image and video data: students at the early stage of their
education that need to lay the ground of their future career, PhD students
and researchers who need a reference in their everyday activity, practitioners
that want to keep the pace of the state-of-the-art.

1.1.2 What Is the Book About?

A first and general answer to the question ‘ What is the book about?’ can be
obtained by defining the two parts of the title, i.e. machine learning (ML) on
one side and audio, image and video analysis on the other side (for a more
detailed description of the content of chapters see Section 1.2):
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Fig. 1.1. Zipcode reading machine. The structure of the machine underlies the
structure of the book: Part I involves the early stages of the data analysis block,
Part II focuses on the machine learning block and Part III shows examples of other
systems.

e ML is a multidisciplinary approach, involving several scientific domains
(e.g. mathematics, computer science, physics, biology, etc.), that enable
computers to automatically learn from data. By learning we mean here a
process that takes as input data and gives as output algorithms capable
of performing, over the same kind of data, a desired task.

e Image, audio and video analysis include any technique capable of extract-
ing from the data high-level information, i.e. information that is not ex-
plicitly stated, but it requires an abstraction process.

As an example, consider a machine for the automatic transcription of zipcodes
written on envelopes. Such machines route the letters towards their correct
destination without human intervention and speed up significantly the mail
delivery process.

The general scheme of such a machine is depicted in Figure 1.1 and it shows
how both components of the title are involved: the image analysis part takes as
input the digital image of the envelope and gives as output the regions actually
containing the zipcode. From the point of view of the machine, the image is
nothing other than an array of numbers and the position of the zipcode, then
of its digits, is not explicitly available. The location of the zipcode is thus an
operation that requires, following the above definition, an abstraction process.

The second stage is the actual transcription of the digits. Handwritten
data are too variable and ambiguous to be transcribed with rules, i.e. with
explicit conditions that must be met in order to transcribe a digit in one
way rather than another. ML techniques address such a problem by using
statistics to model large amounts of elementary information, e.g. the value of
single pixels, and their relations.
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The example concerns a problem where the data are images, but similar
approaches can be found also for audio recordings and videos. In all cases,
analysis and ML components interact in order to first convert the raw data
into a format suitable for ML, and then apply ML techniques in order to
perform a task of interest.

In summary, this book is about techniques that enable one to perform
complex tasks over challenging data like audio recordings, images and videos
data where the informations to be extracted are never explicit, but rather
hidden behind the data statistical properties.

1.2 The Structure of the Book

The structure of the machine shown as an example in Section 1.1.2 underlies
the structure of the book. The text is composed of three following parts:

e From Perception to Computation. This part shows how complex data such
as audio, images and videos can be converted into mathematical objects
suitable for computer processing and, in particular, for the application of
ML techniques.

o Machine Learning. This part presents a wide selection of the machine
learning approaches which are, in our opinion, most effective for image,
video and audio analysis. Comprehensive surveys of ML are left to specific
handbooks (see the references in Chapter 4).

o Applications. This part presents few major applications including ML and
analysis techniques: handwriting and speech recognition, face recognition,
video segmentation and keyframe extraction.

The book is then completed by four appendices that provide notions about the
main mathematical instruments used throughout the text: signal processing,
matrix algebra, probability theory and kernel theory. The following sections
describe in more detail the content of each part.

1.2.1 Part I: From Perception to Computation

This part includes the following two chapters:

e Chapter 2: Audio Acquisition, Representation and Storage
e Chapter 3: Image and Video Acquisition, Representation and Storage

The main goal of this part is to show how the physical supports of our auditory
and visual perceptions, i.e. acoustic waves and electromagnetic radiation, are
converted into objects that can be manipulated by a computer. This is the
sense of the name From Perception to Computation.

Chapter 2 focuses on audio data and starts with a description of the hu-
man auditory system. This shows how the techniques used to represent and
store audio data try to capture the same information that seems to be most
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important for human ears. Major attention is paid to the most common au-
dio formats and their underlying encoding technologies. The chapter includes
also some algorithms to perform basic operations such as silence detection in
spoken data.

Chapter 3 focuses on images and videos and starts with a description of
the human visual apparatus. The motivation is the same as in the case of
audio data, i.e. to show how the way humans perceive images influences the
engineering approaches to image acquisition, representation and storage. The
rest of the chapter is dedicated to color models, i.e. the way visual sensations
are represented in a computer, and to the most important image and video
formats.

In terms of the machine depicted in Figure 1.1, Part I concerns the early
steps of the analsis stage.

1.2.2 Part II: Machine Learning

This part includes the following chapters:

Chapter 4: Machine Learning

Chapter 5: Bayesian Decision Theory

Chapter 6: Clustering Methods

Chapter 7: Foundations of Statistical Machine Learning
Chapter 8: Supervised Neural Networks and Ensemble Methods
Chapter 9: Kernel Methods

Chapter 10: Markovian Models for Sequential Data

Chapter 11: Feature Extraction and Manifold Learning Methods

The main goal of Part II is to provide an extensive survey of the main tech-
niques applied in machine learning. The chapters of Part II cover most of the
ML algorithms applied in state-of-the-art systems for audio, image and video
analysis.

Chapter 4 explains what machine learning is. It provides the basic termi-
nology necessary to read the rest of the book, and introduces few fundamental
concepts such as the difference between supervised and unspervised learning.

Chapter 5 lays the groundwork on which most of the ML techniques are
built, i.e. the Bayesian decision theory. This is a probabilistic framework where
the problem of making decisions about the data, i.e. of deciding whether a
given bitmap shows a handwritten “3” or another handwritten character, is
stated in terms of probabilities.

Chapter 6 presents the so-called clustering methods, i.e. techniques that
are capable of splitting large amounts of data, e.g. large collections of hand-
written digit images, into groups called clusters supposed to contain only
similar samples. In the case of handwritten digits, this means that all samples
grouped in a given cluster should be of the same kind, i.e. they should all
show the same digit.
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Chapter 7 introduces two fundamental tools for assessing the performance
of an ML algorithm: The first is the bias-variance decomposition and the
second is the Vapnik-Cervonenkis dimension. Both instruments address the
problem of model selection, i.e. finding the most appropriate model for the
problem at hand.

Chapter 8 describes some of the most popular ML algorithms, namely
neural networks and ensemble techniques. The first is a corpus of techniques
inspired by the organization of the neurons in the brain. The second is the
use of multiple algorithms to achieve a collective performance higher than the
performance of any single item in the ensemble.

Chapter 9 introduces the kernel methods, i.e. techniques based on the
projection of the data into spaces where the tasks of interest can be performed
better than in the original space where they are represented.

Chapter 10 shows a particular class of ML techniques, the so-called
Markovian models, which aim at modeling sequences rather than single ob-
jects. This makes them particularly suitable for any problem where there are
temporal or spatial constraints.

Chapter 11 presents some techniques that are capable of representing the
data in a form where the actual information is enhanced while the noise is
eliminated or at least attenuated. In particular, these techniques aim at re-
ducing the data dimensionality, i.e. the number of components necessary to
represent the data as vectors. This has several positive consequences that are
described throughout the chapter.

In terms of the machine depicted in Figure 1.1, Part II addresses the
problem of transcribing the zipcode once it has been located by the analysis
part.

1.2.3 Part III: Applications

Part II includes the following chapters:

e Chapter 12: Speech and Handwriting Recognition
e Chapter 13: Face Recognition
e Chapter 14: Video Segmentation and Keyframe Extraction

The goal of Part III is to present examples of applications using the tech-
niques presented in Part II. Each chapter of Part III shows an overall system
where analysis and ML components interact in order to accomplish a given
task. Whenever possible, the chapters of this part present results obtained
using publicly available data and software packages. This enables the reader
to perform experiments similar to those presented in this book.

Chapter 12 shows how Markovian models are applied to the automatic
transcription of spoken and handwritten data. The goal is not only to present
two of the most investigated problems of the literature, but also to show how
the same technique can be applied to two kinds of data apparently different
like speech and handwriting.



1.3 How to Read This Book 7

Chapter 13 presents face recognition, i.e. the problem of recognizing the
identity of a person portrayed in a digital picture. The algorithms used in this
chapter are the principal component analysis (one of the feature extraction
methods shown in Chapter 11) and the support vector machines (one of the
algorithms presented in Chapter 9).

Chapter 14 shows how clustering techniques are used for the segmentation
of videos into shots' and how the same techniques are used to extract from
each shot the most representative image.

Each chapter presents an application as a whole, including both analysis
and ML components. In other words, Part IIT addresses elements that can be
found in all stages of Figure 1.1.

1.2.4 Appendices

The four appendices at the end of the book provide the main notions about
the mathematical instruments used throughout the book:

e Appendiz A: Signal Processing. This appendix presents the main elements
of signal processing theory including Fourier transform, z-transform, dis-
crete cosine transform and a quick recall of the complex numbers. This
appendix is especially useful for reading Chapter 2 and Chapter 12.

o Appendix B: Statistics. This appendix introduces the main statistical no-
tions including space of the events, probability, mean, variance, statistical
independence, etc. The appendix is useful to read all chapters of Parts II
and III.

o Appendiz C: Matriz Algebra. This appendix gives basic notions on matrix
algebra and provides a necessary support for going through some of the
mathematical procedures shown in Part II.

e Appendiz D: Kernel Theory. This appendix presents kernel theory and it
is the natural complement of Chapter 9.

None of the appendices present a complete and exhaustive overview of the
domain they are dedicated to, but they provide sufficient knowledge to read
all the chapters of the book. In other words, the goal of the appendices is not
to replace specialized monographies, but to make this book as self-consistent
as possible.

1.3 How to Read This Book

This section explains some features of this book that should help the reader
to better move through the different parts of the text:

L A shot is an unbroken sequence of images captured with a video camera.
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e Backgorund and Learning Goal Information: at the beginning of each chap-
ter, the reader can find information about required background and learn-
ing goals.

o Difficulty Level of Fach Section: sections requiring a deeper mathematical
background are signaled.

e Problems: at the end of the chapters of Parts I and II (see Section 1.2)
there are problems aimed at testing the skills acquired by reading the
chapter.

o Software: whenever possible, the text provides pointers to publicly avail-
able data and software packages. This enable the reader to immediately
put in practice the notions acquired in the book.

The following sections provide more details about each of the above features.

1.3.1 Background and Learning Objectives

At the beginning of each chapter, the reader can find two lists: the first is
under the header What the reader should know before reading this chapter,
the second is under the header What the reader should know after reading
this chapter. The first list provides information about the preliminary notions
necessary to read the chapter. The book is mostly self-contained and the back-
ground can often be found in other chapters or in the appendices. However,
in some cases the reader is expected to have the basic knowledge provided in
the average undergraduate studies. The second list sets a certain number of
goals to be achieved by reading the chapter. The objectives are designed to
be a measure of a correct understanding of the chapter content.

1.3.2 Difficulty Level

The titles of some sections show a * or ** symbol at the end. > The meaning is
that the content of the sections requires a background available only at the end
of the undergraduate studies (one star) or at the level of PhD and beyond (two
stars). This is not supposed to discourage the readers, bur rather to help them
to better focus on the sections that are more accessible to them. On the other
hand, the assignment of the difficulty level is mostly based on the experience
of the authors. Graduate and undergraduate study programs are different
depending on universities and countries and what the authors consider difficult
can be considered accessible in other situations. In other words, the difficulty
level has to be considered a warning rather than a prescription.

1.3.3 Problems

At the end of each chapter, the reader can find some problems. In some cases
the problems propose to demonstrate theorems or to solve exercices, in other

2 Sections with no stars are supposed to be accessible to anybody.
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cases they propose to perform experiments using publicly available software
packages (see below).

1.3.4 Software

Whenever possible, the book provides pointers to publicly available software
packages and data. This should enable the readers to immediately apply in
practice the algorithms and the techniques shown in the text. All packages
are widely used in the scientific community and are accompanied by extensive
documentation (provided by the package authors). Moreover, since data and
packages have typically been applied in several works presented in the litera-
ture, the readers have the possibility to repeat the experiments performed by
other researchers and practitioners.

1.4 Reading Tracks

The book is not supposed to be read as a whole. Readers should start from
their needs and identify the chapters most likely to address them. This sec-
tion provides few reading tracks targeted at developing specific competences.
Needless to say, the tracks are simply suggestions and provide an orientation
through the content of the book, rather than a rigid prescription.

e [Introduction to Machine Learning. This track includes Appendix A, and

Chapters 4,5 and 7:

Target Readers: students and practitioners that study machine learning
for the first time.

— Goal: to provide the first and fundamental notions about ML, including
what ML is, what can be done with ML, and what are the problems
that can be addressed using ML.

o Kernel Methods and Support Vector Machines. This track includes Appen-

dix D, Chapter 7 and Chapter 9. Chapter 13 is optional.

— Target Readers: experienced ML practitioners and researchers that
want to include kernel methods in their toolbox or background.

—  Goal: to provide competences necessary to understand and use support
vector machines and kernel methods. Chapter 13 provides an exam-
ple of application, i.e. automatic face recognition, and pointers to free
packages implementing support vector machines.

o  Markov Models for Sequences. This track includes Appendix A, Chapter 5
and Chapter 10. Chapter 12 is optional.

— Target Readers: experienced ML practitioners and researchers that
want to include Markov models in their toolbox or background.

—  Goal: to provide competences necessary to understand and use hidden
Markov models and N-gram models. Chapter 12 provides an example
of application, i.e. handwriting recognition, and describes free packages
implementing Markov models.
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o Unsupervised Learning Techniques. This track includes Appendix A, Chap-
ter 5 and Chapter 6. Chapter 14 is optional.
— Target Readers: experienced ML practitioners and researchers that
want to include clustering techniques in their toolbox or background.
—  Goal: to provide competences necessary to understand and use the
main unsupervised learning techniques. Chapter 14 provides an exam-
ple of application, i.e. shot detection in videos.
e Data processing. This track includes Appendix B, Chapter 2 and 3.
— Target Readers: students, researchers and practitioners that work for
the first time with audio and images.
— Goal: to provide the basic competences necessary to acquire, represent
and store audio files and images.
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Audio Acquisition, Representation and Storage

What the reader should know to understand this chapter

e Basic notions of physics.
e Basic notions of calculus (trigonometry, logarithms, exponentials, etc.)

What the reader should know after reading this chapter

Human hearing and speaking physiology.

Signal processing fundamentals.

Representation techniques behind the main audio formats.
Perceptual coding fundamentals.

Audio sampling fundamentals.

2.1 Introduction

The goal of this chapter is to provide basic notions about digital audio process-
ing technologies. These are applied in many everyday life products such as
phones, radio and television, videogames, CD players, cellular phones, etc.
However, although there is a wide spectrum of applications, the main prob-
lems to be addressed in order to manipulate digital sound are essentially three:
acquisition, representation and storage. The acquisition is the process of con-
verting the physical phenomenon we call sound into a form suitable for digital
processing, the representation is the problem of extracting from the sound in-
formation necessary to perform a specific task, and the storage is the problem
of reducing the number of bits necessary to encode the acoustic signals.

The chapter starts with a description of the sound as a physical phe-
nomenon (Section 2.2). This shows that acoustic waves are completely deter-
mined by the energy distribution across different frequencies; thus, any sound
processing approach must deal with such quantities. This is confirmed by an
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analysis of voicing and hearing mechanisms in humans. In fact, the vocal appa-
ratus determines frequency and energy content of the voice through the vocal
folds and the articulators. Such organs are capable of changing the shape of
the vocal tract like it happens in the cavity of a flute when the player acts
on keys or holes. In the case of sound perception, the main task of the ears
is to detect the frequencies present in an incoming sound and to transmit
the corresponding information to the brain. Both production and perception
mechanisms have an influence on audio processing algorithms.

The acquisition problem is presented in Section 2.3 through the descrip-
tion of the analog-to-digital (A/D) conversion, the process transforming any
analog signal into a form suitable for computer processing. Such a process is
performed by measuring at discrete time steps the physical effects of a signal.
In the case of the sound, the effect is the displacement of an elastic membrane
in a microphone due to the pressure variations determined by acoustic waves.
Section 2.3 presents the two main issues involved in the acquisition process:
the first is the sampling, i.e. the fact that the original signal is continuous in
time, but the effect measurements are performed only at discrete-time steps.
The second is the quantization, i.e. the fact that the physical measurements
are continuous, but they must be quantized because only a finite number of
bits is available on a computer.

The quantization plays an important role also in storage problems because
the number of bits used to represent a signal affects the amount of memory
space needed to store a recording. Section 2.4 presents the main techniques
used to store audio signals by describing the most common audio formats
(e.g. WAV, MPEG, mp3, etc.). The reason is that each format corresponds
to a different encoding technique, i.e. to a different way of representing an
audio signal. The goal of encoding approaches is to reduce the amount of
bits necessary to represent a signal while keeping an acceptable perceptual
quality. Section 2.4 shows that the pressure towards the reduction of the bit-
rate (the amount of bits necessary to represent one second of sound) is due
not only to the emergence of new applications characterized by tighter space
and bandwidth constraints, but also by consumer preferences.

While acquisition and storage problems are solved with relatively few stan-
dard approaches, the representation issue is task dependent. For storage prob-
lems (see above), the goal of the representation is to preserve as much as pos-
sible the information of the acoustic waveforms, in prosody analysis or topic
segmentation, it is necessary to detect the silences or the energy of the signal,
in speaker recognition the main information is in the frequency content of
the voice, and the list could continue. Section 2.5 presents some of the most
important techniques analyzing the variations of the signal to extract useful
information. The corpus of such techniques is called time domain processing
in opposition to frequency-domain methods that work on the spectral repre-
sentation of the signals and are shown in Appendix B and Chapter 12.

Most of the content of this chapter requires basic mathematical notions,
but few points need familiarity with Fourier analysis. When this is the case,
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the text includes a warning and the parts that can be difficult for unexperi-
enced readers can be skipped without any problem. An introduction to Fourier
analysis and frequency domain techniques is available in Appendix B. Each
section provides references to specialized books and tutorials presenting in
more detail the different issues.

2.2 Sound Physics, Production and Perception

This section presents the sound from both a physical and physiological point
of view. The description of the main acoustic waves properties shows that
the sound can be fully described in terms of frequencies and related energies.
This result is obtained by describing the propagation of a single frequency
sine wave, an example unrealistically simple, but still representative of what
happens in more realistic conditions. In the following, this section provides
a general description of how the human beings interact with the sound. The
description concerns the way the speech production mechanism determines
the frequency content of the voice and the way our ears detect frequencies in
incoming sounds.

For more detailed descriptions of the acoustic properties, the reader can
refer to more extensive monographies [3][16][24] and tutorials [2][11]. The psy-
chophysiology of hearing is presented in [23][30], while good introductions to
speech production mechanisms are provided in [9][17].

2.2.1 Acoustic Waves Physics

The physical phenomenon we call sound is originated by air molecule os-
cillations due to the mechanical energy emitted by an acoustic source. The
displacement s(t) with respect to the equilibrium position of each molecule
can be modeled as a sinusoid:

s(t) = Asin(2w ft + ¢) = Asin (%}Tt + d)) (2.1)

where A is called amplitude and represents the maximum distance from the
equilibrium position (typically measured in nanometers), ¢ is the phase, T is
called period and it is the time interval length between two instants where s(t)
takes the same value, and f = 1/T is the frequency measured in Hz, i.e. the
number of times s(t) completes a cycle per second. The function s(t) is shown
in the upper plot of Figure 2.1. Since all air molecules in a certain region of
the space oscillate together, the acoustic waves determine local variations of
the density that correspond to periodic compressions and rarefactions. The
result is that the pressure changes with the time following a sinusoid p(t) with
the same frequency as s(t), but amplitude P and phase ¢* = ¢ + 7/2:
27

plt) = Psin (2nft + 6+ 3 ) = Psin ( o g) S 2
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Fig. 2.1. Frequence and wavelength. The upper plot shows the displacement of air
molecules with respect to their equilibrium position as a function of time. The lower
plot shows the distribution of pressure values as a function of the distance from the
sound source.

The dashed sinusoid in the upper plot of Figure 2.1 corresponds to p(t) and
it shows that the pressure variations have a delay of a quarter of period
(due to the 7/2 added to the phase) with respect to s(t). The maximum
pressure variations correspond, for the highest energy sounds in a common
urban environment, to around 0.6 percent of the atmospheric pressure.

When the air molecules oscillate, they transfer part of their mechanical
energy to surrounding particules through collisions. The molecules that receive
energy start oscillating and, with the same mechanism, they transfer mechanic
energy to further particles. In this way, the acoustic waves propagate through
the air (or any other medium) and can reach listeners far away from the
source. The important aspect of such a propagation mechanism is that there
is no net flow of particles no matter is transported from the point where the
sound is emitted to the point where a listener receives it. Sound propagation
is actually due to energy transport that determines pressure variations and
molecule oscillations at distance x from the source.

The lower plot of Figure 2.1 shows the displacement s(x) of air molecules
as a function of the distance x from the audio source:

s(z) = Asin (%jrfx + qb) = Asin (2;:10 + (;5) (2.3)



2.2 Sound Physics, Production and Perception 17

where v is the sound speed in the medium and A = v/f is the wavelength,
i.e. the distance between two points where s(x) takes the same value (the
meaning of the other symbols is the same as in Equation (2.1). Each point
along the horizontal axis of the lower plot in Figure 2.1 corresponds to a
different molecule of which s(x) gives the displacement. The pressure variation
p(z) follows the same sinusoidal function, but has a quarter of period delay
like in the case of p(t) (dashed curve in the lower plot of Figure 2.1):

p(a:)Psin<27rf:17+¢+7r)Psin(%x+¢+ﬂ>. (2.4)
v 2 A 2

The equations of this section assume that an acoustic wave is completely
characterized by two parameters: the frequency f and the amplitude A. From
a perceptual point of view, A is related to the loudness and f corresponds to
the pitch. While two sounds with equal loudness can be distinguished based
on their frequency, for a given frequency, two sounds with different amplitude
are perceived as the same sound with different loudness. The value of f is mea-
sured in Hertz (Hz), i.e. the number of cycles per second. The measurement
of A is performed through the physical effects that depend on the amplitude
like pressure variations.

The amplitude is related to the energy of the acoustic source. In fact, the
higher is the energy, the higher is the displacement and, correspondently,
the perceived loudness of the sound. From an audio processing point of view,
the important aspect is what happens for a listener at a distance R from the
acoustic source. In order to find a relationship between the source energy and
the distance R, it is possible to use the intensity I, i.e. the energy passing per
time unit through a surface unit. If the medium around the acoustic source
is isotropic, i.e. it has the same properties along all directions, the energy is
distributed uniformly on spherical surfaces of radius R centered in the source.
The intensity I can thus be expressed as follows:

w

I(R)= 7 (2.5)

where W = AE /At is the source power, i.e. the amount of energy AE emitted
in a time interval of duration At. The power is measured in watts (W) and
the intensity in watts per square meter (W/m?). The relationship between I
and A is as follows:

I =27n°f*A* (2.6)

where Z is a characteristic of the medium called acoustic impedance .

Since the only sounds that are interesting in audio applications are those
that can be perceived by human beings, the intensities can be measured
through their ratio I/I to the threshold of hearing (THO) Iy, i.e. the min-
imum intensity detectable by human ears. However, this creates a problem
because the value of Iy corresponds to 1072 W/m?2, while the maximum
value of I that can be tolerated without permanent physiological damages is
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Ias = 103 W/m2. The ratio /Iy can thus range across 15 orders of magni-
tude and this makes it difficult to manage different intensity values. For this
reason, the ratio I/l is measured using the deciBel (dB) scale:

I
I" =10log;, (I> (2.7)
0

where I* is the intensity measured in dB. In this way, the intensity values
range between 0 (I = Ip) and 150 (I = L44). Since the intensity is propor-
tional to the square power of the maximum pressure variation P as follows:
P2
I1=—, 2.8
the value of I'* can be expressed also in terms of db SPL (sound pressure
level):

P
I* =20logy, (P) . (2.9)
0

The numerical value of the intensity is the same when using dB or db SPL,
but the latter unit allows one to link intensity and pressure. This is important
because the pressure is a physical effect relatively easy to measure and the
microphones rely on it (see Section 2.3).

Real sounds are never characterized by a single frequency f, but by an
energy distribution across different frequencies. In intuitive terms, a sound can
be thought of as a “sum of single frequency sounds,” each characterized by a
specific frequency and a specific energy (this aspect is developed rigorously in
Appendix B). The important point of this section is that a sound can be fully
characterized through frequency and energy measures and the next sections
show how the human body interacts with sound using such informations.

2.2.2 Speech Production

Human voices are characterized, like any other acoustic signal, by the energy
distribution across different frequencies. This section provides a high-level
sketch of how the human vocal apparatus determines such characteristics.
Deeper descriptions, especially from the anatomy point of view, can be found
in specialized monographies [23][30].

The voice mechanism starts when the diaphragm pushes air from lungs
towards the oral and nasal cavities. The air flow has to pass through an
organ called glottis that can be considered like a gate to the vocal tract (see
Figure 2.2). The glottis determines the frequency distribution of the voice,
while the vocal tract (composed of larynx and oral cavity) is at the origin of
the energy distribution across frequencies. The main components of the glottis
are the vocal folds and the way they react with respect to air coming from the
lungs enables to distinguish between the two main classes of sounds produced
by human beings. When the vocal folds vibrate, the sounds are called voiced,
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Fig. 2.2. Speech production. The left figure shows a sketch of the speech production
apparatus (picture by Matthias Dolder); the right figure shows the glottal cycle:
the air flows increases the pressure below the glottis (1), the vocal folds open to
reequilibrate the pressure difference between larynx and vocal tract (2), once the
equlibrium is achieved the vocal folds close again (3). the cycle is repated as long as
air is pushed by the lungs.

otherwise they are called unvoiced. For a given language, all words can be
considered like sequences of elementary sounds, called phonemes, belonging
to a finite set that contains, for western languages, 35-40 elements on average
and each phoneme is either voiced or unvoiced.

When a voiced phoneme is produced, the vocal folds vibrate following the
cycle depicted in Figure 2.2. When air arrives at the glottis, the pressure dif-
ference with respect to the vocal tract increases until the vocal folds are forced
to open to reestablish the equilibrium. When this is reached, the vocal folds
close again and the cycle is repeated as long as voiced phonemes are produced.
The vibration frequency of the vocal folds is a characteristic specific of each
individual and it is called fundamental frequency FO, the single factor that
contributes more than anything else to the voice pitch. Moreover, most of the
energy in human voices is distributed over the so-called formants, i.e. sound
components with frequencies that are integer multiples of F'0 and correspond
to the resonances of the vocal tract. Typical F'O values range between 60 and
300 Hz for adult men and small children (or adult women) respectively. This
means that the first 10-12 formants, on which most of the speech energy is dis-
tributed, correspond to less than 4000 Hz. This has important consequences
on the human auditory system (see Section 2.2.3) as well as on the design of
speech acquisition systems (see Section 2.3).

The production of unvoiced phonemes does not involve the vibration of
the vocal folds. The consequence is that the frequency content of unvoiced
phonemes is not as defined and stable as the one of voiced phonemes and
that their energy is, on average, lower than that of the others. Examples of
voiced phonemes are the vowels and the phonemes corresponding to the first
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sound in words like milk or lag, while unvoiced phonemes can be found at
the beginning of words siz and stop. As a further example you can consider
the words son and zone which have phonemes at the beginning where the
vocal tract has the same configuration, but in the first case (son) the initial
phoneme is unvoiced, while it is voiced in the second case. The presence of
unvoiced phonemes at the beginning or the end of words can make it difficult
to detect their boundaries.

The sounds produced at the glottis level must still pass through the vocal
tract where several organs play as articulators (e.g. tongue, lips, velum, etc.).
The position of such organs is defined articulators configuration and it changes
the shape of the vocal tract. Depending on the shape, the energy is concen-
trated on certain frequencies rather than on others. This makes it possible
to reconstruct the articulator configuration at a certain moment by detecting
the frequencies with the highest energy. Since each phoneme is related to a
specific articulator configuration, energy peak tracking, i.e. the detection of
highest energy frequencies along a speech recording, enables, in principle, to
reconstruct the voiced phoneme sequences and, since most speech phonemes
are voiced, the corresponding words. This will be analyzed in more detail in
Chapter 12.

2.2.3 Sound Perception

This section shows how the human auditory peripheral system (APS), i.e.
what the common language defines as ears, detects the frequencies present in
incoming sounds and how it reacts to their energies (see Figure 2.3). The def-
inition peripheral comes from the fact that no cognitive functions, performed
in the brain, are carried out at its level and its only role is to acquire the
information contained in the sounds and to transmit it to the brain. In ma-
chine learning terms, the ear is a basic feature extractor for the brain. The
description provided here is just a sketch and more detailed introductions to
the topic can be found in other texts [23][30].

The APS is composed of three parts called outer, middle and inner ear.
The outer ear is the pinna that can be observed at both sides of the head.
Following recent experiments, the role of the outer ear, considered minor so
far, seems to be important in the detection of the sound sources position.
The middle ear consists of the auditory channel, roughly 1.3 cm long, which
connects the external environment with the inner ear. Although it has such
a simple structure, the middle ear has two important properties, the first is
that it optimizes the transmission of frequencies between around 500 and 4000
Hz, the second is that it works as an impedance matching mechanism with
respect to the inner ear. The first property is important because it makes
the APS particularly effective in hearing human voices (see previous section),
the second one is important because the inner ear has an acoustic impedance
higher than air and all the sounds would be reflected at its entrance without
an impedance matching mechanism.
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oval cochlea
window
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channel

Fig. 2.3. Auditory peripheral system. The peripheral system can be divided into
outer (the pinna is the ear part that can be seen on the sides of the head), middle
(the channel bringing sounds toward the cochlea) and inner part (the cochlea and
the hair cells). Picture by Matthias Dolder.

The main organ of the inner ear is the cochlea, a bony spiral tube around
3.5 cm long that coils 2.6 times. Incoming sounds penetrate into the cochlea
through the oval window and propagate along the basilar membrane (BM), an
elastic membrane that follows the spiral tube from the base (in correspondence
of the oval window) to the apezr (at the opposite extreme of the tube). In
the presence of incoming sounds, the BM vibrates with an amplitude that
changes along the tube. At the base the amplitude is at its minimum and
it increases constantly until a maximum is reached, after which point the
amplitude decreases quickly so that no more vibrations are observed in the
rest of the BM length. The important aspect of such a phenomenon is that
the point where the maximum BM displacement is observed depends on the
frequency. In other words, the cochlea operates a frequency-to-place conversion
that associates each frequency f to a specific point of the BM. The frequency
that determines a maximum displacement at a certain position is called the
characteristic frequency for that place. The nerves connected to the external
cochlea walls in correspondence of such a point are excited and the information
about the presence of f is transmitted to the brain.

The frequency-to-place conversion is modeled in some popular speech
processing algorithms through the critical band analysis. In such an approach,
the cochlea is modeled as a bank of bandpass filters, i.e. as a device composed
of several filters stopping all frequencies outside a predefined interval called
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Fig. 2.4. Frequency normalization. Uniform sampling on the vertical axis induces
on the horizontal axis frequency intervals more plausible from a perceptual point of
view. Frequencies are sampled more densely when they are lower than 4kH z, the
region covered by the human auditory system.

critical band and centered around a critical frequency f;. The problem of find-
ing appropriate f; values is addressed by selecting frequencies such that the
perceptual difference between f; and f;;1 is the same for all 4. This condition
can be achieved by mapping f onto an appropriate scale T'(f) and by selecting
frequency values such that T'(f;+1) — T(f;) has the same values for every i.
The most popular transforms are the Bark scale:

f2
b(f) = 13- arctan(0.00076 f) + 3.5 - arctan (75002 , (2.10)
and the Mel scale s
=11 . —_— . 1
B(f) =1125-In <1+ 700) (2.11)

Both above functions are plotted in Figure 2.4 and have finer resolution at
lower frequencies. This means that ears are more sensitive to differences at
low frequencies than at high frequencies.

2.3 Audio Acquisition

This section describes the audio acquisition process, i.e. the conversion of
sound waves, presented in the previous section from a physical and physiolog-
ical point of view, into a format suitable for machine processing. When the
machine is a digital device, e.g. computers and digital signal processors (DSP),
such a process is referred to as analog-to-digital (A/D) conversion because an
analogic signal (see below for more details) is transformed into a digital ob-
ject, e.g. a series of numbers. In general, the A/D conversion is performed
by measuring one or more physical effects of a signal at discrete time steps.
In the case of the acoustic waves, the physical effect that can be measured
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more easily is the pressure p in a certain point of the space. Section 2.2 shows
that the signal p(t) has the same frequency as the acoustic wave at its origin.
Moreover, it shows that the square of the pressure is proportional to the sound
intensity I. In other words, the pressure variations capture the information
necessary to fully characterize incoming sounds.

In order to do this, microphones contain an elastic membrane that vibrates
when the pressure at its sides is different (this is similar to what happens in
the ears where an organ called eardrum captures pressure variations). The
displacement s(t) at time ¢ of a membrane point with respect to the equi-
librium position is proportional to the pressure variations due to incoming
sounds, thus it can be used as an indirect measure of p at the same instant ¢.
The result is a signal s(¢) which is continuous in time and takes values over a
continuous interval S = [—Spaz, Smaz]. On the other hand, the measurement
of s(t) can be performed only at specific instants ¢; (¢ = 0,1,2,..., N) and no
information is available about what happens between t; and ¢;1. Moreover,
the displacement measures can be represented only with a finite number B
of bits, thus only 28 numbers are available to represent the non countable
values of S. The above problems are called sampling and quantization, re-
spectively, and have an important influence on the acquisition process. They
can be studied separately and are introduced in the following sections.

Extensive descriptions of the acquisition problem can be found in signal
processing [22][28] and speech recognition [15] books.

2.3.1 Sampling and Aliasing

During the sampling process, the displacement of the membrane is measured
at regular time steps. The number F' of measurements per second is called sam-
pling frequency or sampling rate and, correspondently, the length T, = 1/F
of the time interval between two consecutive measurements is called sampling
period. The relationship between the analog signal s(¢) and the sampled signal
s[n] is as follows:

s[n] = s(nTe) (2.12)

where the square brackets are used for sampled discrete-time signals and the
parentheses are used for continuous signals (the same notation will be used
throughout the rest of this chapter).

As an example, consider a sinusoid s(t) = Asin(27 ft + ¢). After the sam-
pling process, the resulting digital signal is:

s[n] = Asin(2r fnT, + ¢) = Asin(27 fon + ¢) (2.13)

where fo = f/F is called normalized frequency and it corresponds to the
number of sinusoid cycles per sampling period. Consider now the infinite set
of continuous signals defined as follows:

sk(t) = Asin(2knF't + 27 ft + @) (2.14)
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time

Fig. 2.5. Aliasing. Two sinusoidal signals are sampled at the same rate F’ and result
in the same sequence of points (represented with circles).

where k£ € (0,1,...,00), and the corresponding digital signals sampled at

frequence F':
sk[n] = Asin(2kmn + 27 fon + ¢). (2.15)

Since sin(a + ) = sinacos B + cos asin 3, the sinus of a multiple of 27 is
always null, and the cosine of a multiple of 27 is always 1, the last equation
can be rewritten as follows:

skn] = Asin(27 fon + ¢) = s[n] (2.16)

where k € (0,1,...,00), then there are infinite sinusoidal functions that are
transformed into the same digital signal s[n] through an A /D conversion per-
formed at the same rate F'.

Such problem is called aliasing and it is depicted in Figure 2.5 where
two sinusoids are shown to pass through the same points at time instants
t, = nT. Since every signal emitted from a natural source can be represented
as a sum of sinusoids, the aliasing can possibly affect the sampling of any
signal s(¢). This is a major problem because does not allow a one-to-one
mapping between incoming and sampled signals. In other words, different
sounds recorded with a microphone can result, once they have been acquired
and stored on a computer, into the same digital signal.

However, the problem can be solved by imposing a simple constraint on
F'. Any acoustic signal s(t) can be represented as a superposition of sinusoidal
waves with different frequencies. If f,,4. is the highest frequency represented
in s(t), the aliasing can be avoided if:

F > 2fmas (2.17)

where 2f,,4. is called the critical frequency, Nyquist frequency or Shannon
frequency. The inequality is strict; thus the aliasing can still affect the sampling
process when F' = 2f,,,.. In practice, it is difficult to know the value of f,,4.,
then the microphones apply a low-pass filter that eliminates all frequencies
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below a certain threshold that corresponds to less than F/2. In this way the
condition in Equation (2.17) is met. !

The demonstration of the fact that the condition in Equation (2.17) en-
ables us to avoid the aliasing problem is given in the so-called sampling the-
orem, one of the foundations of signal processing. Its demonstration is given
in the next subsection and it requires some deeper mathematical background.
However, it is not necessary to know the demonstration to understand the rest
of this chapter; thus unexperienced readers can go directly to Section 2.3.3
and continue the reading without problems.

2.3.2 The Sampling Theorem™**

Aliasing is due to the effect of sampling in the frequency domain. In order
to identify the conditions that enable to establish a one-to-one relationship
between continuous signals s(¢) and corresponding digital sampled sequences
s[n], it is thus necessary to investigate the relationship between the Fourier
transforms of s(t) and s[n] (see Appendix B).

The FT of s(t) is given by:

S, (jw) = /OO s(t)e Itdt, (2.18)

while the FT of the sampled signal is:

o0

Sa(e) = Y s[nleien. (2.19)

n—=——oo

However, the above Sy form is not the most suitable to show the relationship
with S,, thus we need to find another expression. The sampling operation can
be thought of as the product between the continuous signal s(t) and a periodic
impulse train (PIT) p(t):

pt)= > 8(t—nT.), (2.20)

n=—oo

where T, is the sampling period, and §(k) = 1 for & = 0 and d(k) = 0
otherwise. The result is a signal s,(¢) that can be written as follows:

sp(t) = s(t)p(t) = s(t) Y Ot —nT.). (2.21)

n=—oo

! Since the implementation of a low-pass filter that actually stops all frequencies
above a certain threshold is not possible, it is more correct to say that the ef-
fects of the aliasing problem are reduced to a level that does not disturb human
perception. See [15] for a more extensive description of this issue.
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The PIT can be expressed as a Fourier series:

oo

1 .
p)=7 D 7= Z eI ekt (2.22)

k=—o0 € k=—0co

and s, (t) can thus be reformulated as follows:

2okt _ S(t) o~ iorkt
Z eI D el ekt (2.23)

k=—o0 C k=—o0

C

The FT of sp(t) is thus:

I = [™ , ,
S =1 Y / s(t)ed rkt=i%1 gy (2.24)

— 00

and this can be interpreted as an infinite sum of shifted and scaled replicas of
the FT of s(t):

S, ( Z S.(j (2 — k7)), (2.25)
¢ k=—o0
where each term of the sum is shifted by integer multiples of {27, with respect
to its neighbors.

The above situation is illustrated in Figure 2.6. The sampling induces repli-
cations of S, (j{2) centered around integer multiples of {27, in correspondence
of the impulses of the PIT Fourier transform. Each replication is 22,4, wide,
where 202 = 27 fmaz 1S the highest angular frequency represented in the
original signal s(t). The k" replication of S, (j2) stops at 2 = kQr, + ax,
while the (k 4 1)th one starts at (k 4+ 1)£21, — 2142 The condition to avoid
overlapping between consecutive replications is thus:

Q1. > 20mas. (2.26)
Since 2 = 27 f, Equation (2.26) corresponds to:
F > 2fmas. (2.27)

This result is known as sampling theorem, and it is typically formulated as
follows:

Theorem 2.1. In order for a band-limited (i.e. one with a zero power spec-
trum for frequencies f > fimaz) baseband (f > 0) signal to be reconstructed
fully, it must be sampled at a rate F > 2fpqz-

Figure 2.6 shows what happens when the above condition is met (first
and second plot from above) and when is not (third and fourth plot from
above). Equation (2.26) is important because the overlapping between S, (2)
replications is the frequency domain effect of the aliasing. In other words, the
aliasing can be avoided if signals are sampled at a rate F' higher or equal than
the double of the highest frequency faz-
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Fig. 2.6. Sampling effect in the frequency domain. The first two plots from above
show the sampling effect when 27, > 2(2,,. The replications of S,(jf2)m, centered
around the pulses in P(j{2), are separated and the aliasing is avoided. In the third
and fourth plot where the distance between the pulses in P(5(2) is lower than 2£2,,
and the aliasing takes place.

2.3.3 Linear Quantization

The second problem encountered in the acquisition process is the quantization,
i.e. the approximation of a continuous interval of values by a relatively small
set of discrete symbols or integer values. In fact, while the s[n] measures range,
in general, in a continuous interval S = [— Sz, Smaz], only 28 discrete values
are at disposition when B bits are available in a digital device. This section
focuses on linear quantization methods, i.e. on quantization techniques that
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split the s[n] range into 27 intervals and represent all the s[n] values lying
in one of them with the same number. Other quantization techniques, called
vectorial, will be described in Chapter 8.

The quantization can be thought of as a process that transforms a sequence
of continuous values s[n] into a sequence of discrete values §[n]. The most
straightforward method to perform such a task is the so-called linear pulse
code modulation (PCM) [27]. The PCM splits the interval S into 2P uniform
intervals of length A:

Smaac
A= 5. (2.28)

Each interval is given a code corresponding to one of the 28 numbers that can
be described with B bits and §[n] is obtained in one of the following ways:

8[n] = sign(c[n])) % + c[n]A

5n] = c[n] A (2.29)

where ¢[n] is the code of the interval where s[n] falls. The two equations
correspond to the situation depicted in left (mid-riser quantizer) and right
(mid-tread quantizer) plots of Figure 2.7, respectively.

The use of §[n] to represent s[n] introduces an error €[n] = s[n] — §[n]. This
leads to the use of the Signal to Noise Ratio (SNR) as a performance measure
for quantization methods:

Sty s°[n]
SNR = 10log;, { —=2 A -
" { > n=o (8[n] — 8[n])? } (2.30)

where M is the number of samples in the data. Since Y, s%[n] is the energy
of a signal (see Section 2.5 for more details), the above equation is nothing
but the ratio between the energy of the signal and the energy of the noise
introduced by the quantization. The use of the logarithm (multiplied by 10)
enables to use the dB as a measure unit (see Section 2.2). Higher SNR values
correspond to better quantization performances because, for a given signal,
the energy of the noise becomes smaller when the the values of the differences
s[n] — §[n] decrease.

The main limit of the SNR is that it might hide temporal variations of the
performance. Local deteriorations can be better detected by using short term
SNR measures extracted from segments of predefinite length V. The average
of local SNR values is called segmental SNR (SEGSNR) and it corresponds
to the following expression:

L-1 N—-1 o

1 tN

SEGSNR = 2 3" logyg Nflzn;o SN + ] (2.31)
L= > n—o (S[tN +n] = 8[tN + n])?

where L is the number of N long segments spanning the M samples of the
signal. The SEGSNR tends to penalize encoders with different performance
for different signal energy and frequency ranges.
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Fig. 2.7. Uniform quantization. The left plot shows a mid-riser quantizer, while the
right plot shows a mid-tread quantizer.

In the case of the PCM, the upper bound of €[n] is A; in fact the maximum
value that the difference s[n] — §[n] can assume is the length of the interval
where s[n] falls. The lower bound of the SNR is thus:

M-1
1
SNRPCM =10 lOg]_O {A2 Z SQ[n]} . (232)

n=0

The above expression shows the main limits of the PCM: if the SNR of lower
energy signals decreases to a point that the perceptual quality of the quan-
tized signal becomes unacceptable, the only way to improve the quantization
performance is to reduce A, i.e. to increase the number of bits B. On the
other hand, it can happen that the same A value that makes unacceptable
the perceptual quality for lower-energy signals can be tolerated in the case of
higher-energy sounds. For the latter, an increase of B is thus not necessary
and it leads to an improvement of the SNR that goes beyond the human ear
sensibility. This is not desirable, because the number of bits must be kept as
low as possible in order to reduce the amount of memory necessary to store
the data as well as the amount of bits that must be transmitted through a
line.

The solutions proposed to address such a problem are based on the fact
that the SNR is a ratio and can be kept constant by adapting the quantization
error €[n] to the energy of the signal for any sample n. In other words, the SNR,
is kept at an acceptable level for all energy values by allowing higher quanti-
zation errors for higher-energy signals. Such an approach is used in differential
PCM (DPCM), delta modulation (DM) and adaptive DPCM (ADPCM) [10].
However, satisfactory results can be obtained with two simple variants of
the PCM that simply use a non uniform quantization interval. The variants,
known as p-law and A-law PCM, are currently applied in telecommunications
and are described in the next section.
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2.3.4 Nonuniform Scalar Quantization

The previous section has shown that the SNR value can be kept constant at
different energies by adapting the quantization error €[n] to the signal energy:
the higher the energy of the signal, the higher the value of the quantization
error that can be tolerated. This section shows how such a result can be
obtained through functions called logarithmic companders and describes two
quantization techniques based on such an approach and commonly applied in
telecommunications: p-law and A-law PCM.

A logarithmic compander is a function that uses a logarithm to compress
part of the domain where it is defined:

y[n] = In(|s[n][)sign(s[n]), (2.33)
where y[n] € Y = [—In(Smaz); n(Smaz)], sign(z) = 1 when z > 0 and
sign(z) = —1 when z < 0 (see Section 2.3.3 for the meaning of symbols). If

the uniform quantization is performed over Y (the vertical axis of Figure 2.8),
then g[n] — y[n] = €[n] and:

3] = exp(yln])sign(sin]) = sln] exp(e[n]) (2.34)

Since Y is quantized uniformly, €[n] can be approximated with the length
Ay of the quantization interval. When e[n] — 0, the above equation can be
rewritten as follows using a Taylor series expansion:

§[n] ~ s[n](1 + €[n]) (2.35)

and the expression of the SNR (see Equation (2.30)) for the logarithmic com-
pander corresponds to

M M

SNRypy = 3 o = ——. (2.36)
CLE R

thus, for a given signal length, SINR;,;, does not depend on the energy. This
happens because the uniform quantization of Y induces a nonuniform quan-
tization on S such that the quantization step is proportional to the signal
energy. When the energy of the signal increases, the quantization error is
increased as well and the SNR of Equation (2.30) is kept constant.

The compander in Equation (2.33) brings to the above effect only when
€[n] — 0, but this is not possible for real applications. For this reason two

variants are used in real applications?:

2 There is no noticeable difference between the performance of the two companders,
the A-law compander is used in Europe and other countries affiliated to the ITU
(with A = 87.56), while the p-law compander is mostly used in the USA (with
1= 255).
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Fig. 2.8. Nonuniform quantization. The logarithmic companders induce finer quan-
tization on lower-energy signals. Intervals with the same width on the vertical axis
correspond to intervals with different width on the horizontal axis.

log (1 + pleinll )

Smaax

= Smaz i 2.37
yl el siom(sln]) (237)
which is called the p-law and
Aldstnll oln
Smaa Trpes sign(s(n]); 0< Sl < 1
yln] = (2.38)

1+log (ALl )

max

Smawwsign(s[n]); % < lsinll

Smawz

<1

which is called the A-law. It can be demonstrated that both above quantizers
lead to an SNR independent of the signal energy.

In telephone communications, an SNR. of around 35 dB is considered ac-
ceptable. While a uniform quantizer requires 12 bits to guarantee such an
SNR all over the energy spectrum, A-law and p-law can achieve the same
result by using only 8 bits [35]. For this reason, the above nonuniform quan-
tization techniques are recommended by the International Communications
Union and are applied to transmit speech through telephone networks [15].
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2.4 Audio Encoding and Storage Formats

The number B of bits used to represent audio samples plays an important
role in transmission and storage problems. In fact, the higher is B, the bigger
is the amount of data to be transmitted through a channel and the larger
is the memory space needed to store a recording. The amount of bits per
time unit necessary to represent a signal is called bit-rate and it must be kept
as low as possible to respect application constraints such as bandwidth and
memory. On the other hand, a reduction of the bit-rate is likely to degradate
the perceptual quality of the data and this, beyond a certain limit, is not
tolerated by users (Section 2.3 shows that the reduction of B decreases the
SNR of audio acquisition systems). The domain targeting techniques capable
of reducing the bit-rate while still preserving a good perceptual quality is
called audio encoding.

The main encoding methods result in audio formats (e.g. MPEG, WAV,
mp3, etc.), i.e. into standardized ways of representing and organizing audio
data inside files that can be used by computer applications. For this reason,
this section presents not only encoding technologies, but also audio formats
that make use of them. In particular, it will be shown how the development of
new encoding methods and the definition of new formats is typically driven by
two main factors: the first is the emergence of new applications that have bit-
rate constraints tighter than the previous ones, the second is the expectation of
users that accept different perceptual qualities depending on the applications.

The encoding problem is the subject of monographies [5] and tutori-
als [29][35] that provide extensive introductions to the different algorithms
and formats. For the MPEG audio format and coding technique, both tutor-
ial level [4][7][26] articles and monographies [21] are available.

2.4.1 Linear PCM and Compact Discs

The earliest encoding approach is the linear PCM presented in Section 2.3.
Although simple, such a technique is the most expensive in terms of bit-rate
(see below) and the most effective for what concerns perceptual quality. Since
it reproduces the whole information contained in the original waveform, the
linear PCM is said lossless, in opposition to lossy approaches that discard
selectively part of the original signal (see the rest of this section for more
detail). In general, the samples are represented with B = 16 bits because this
makes the quantization error small enough to be inaudible even by trained
listeners (the so-called golden ears [29]). The sampling frequency commonly
used for high-fidelity audio is F' = 44.1 kHz and this leads to a bit rate of
2BF = 1,411,200 bits per second. The factor 2 accounts for the two aural
channels in a stereo recording.

Although high, such a bit-rate could be accomodated on the first supports
capable of storing digital audio signals, i.e. digital audio tapes (DAT) and
compact discs (CD). These last in particular started to spread in the early
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eighties, although invented in the sixties, and they are now, together with CD
players, some of the most important consumer electronic products. One hour
of high fidelity stereo sound at the 16-bit PCM rate requires roughly 635 MB.
A CD can actually store around 750 MB, but the difference is needed for error
correction bits, i.e. data required to recover acquisition errors. Since CDs have
been used mainly to replace old vinyl recordings that were often shorter, the
one-hour limit was largely accepted by users, and still is. For this reason, there
was no pressure to decrease the PCM bit-rate in order to store more sound on
CDs. At the same time, the perceptual improvement determined by the use of
digital rather than analogic supports was so high, that the user expectations
increased significantly and the CD-quality is currently used as a reference for
any other encoding technique [26].

The linear PCM is the basis for several other formats that are used in
conditions where the memory space is not a major problem: Windows WAV,
Apple AIFF and Sun AU. In fact, such formats, with different values of B
and F', are used to store sound on hard disks that are today large enough to
contain hours of recordings and that promise to grow at a rate that makes
the space constraint marginal.

The same does not apply to telephone communications where a high bit-
rate results into an uneffective use of the lines. For this reason, the first efforts
in reducing the bit-rate came from that domain. On the other hand, the devel-
opment of encoding techniques for phone communications has an important
advantage: since consumers are used to the fact that the so-called telephone
speech is not as natural as in other applications (e.g. radio and television),
their expectations are significantly lower and the bit-rate can be reduced with
simple modifications of the linear PCM.

Section 2.3 shows that the main limit of the linear PCM is that the quanti-
zation error does not change with the signal energy. In this way, the parameter
B must be kept at a level that leads to an SNR acceptable at low energies,
but high beyond human earing sensibility at higher energies. In other words,
there is a waste of bits at higher energies. The A-law and p-law logarithmic
companders address such a problem by adapting the quantization errors to
the amplitude of the signals and reduce by roughly one third the bit-rate nec-
essary to achieve a certain perceptual quality. For this reason the logarithmic
companders are currentliy adviced by the International Telecommunications
Union (ITU) and are widely applied with A = 87.55 and p = 255.

One of the most important lessons in the phone case, is that user expec-
tations are not directed towards the highest possible quality, but simply at
keeping constant the perceptual level in a given application. For this reason,
the performance of an encoder is measured not only with the SNR, but also
with the mean opinion score (MOS), a subjective test involving several naive
listeners, i.e. people that do not know encoding technologies (this might bias
their evaluations). Each listener is asked to give a score between 1 (bad) and
5 (excellent) to a given encoded sound and the resulting MOS value is the av-
erage of all judgments given by the assessors. An MOS of 4.0 or more defines



34 2 Audio Acquisition, Representation and Storage

good or toll quality where the encoded signal cannot be distinguished from
the original one. An MOS between 3.5 and 4.0 is considered acceptable for
telephone communications [15]. The test can be performed unformally, but
the results are accepted in the official organizations only if they respect the
rigorous protocols given by the ITU [1].

2.4.2 MPEG Digital Audio Coding

Logarithmic companders and other approaches based on the adaptation of
the noise to the signal energy (see Section 2.3) obtain significant reductions of
the bit-rate. However, these are not sufficient to respect bandwidth and space
constraints imposed by applications developed in the last years. Multimedia,
streaming, online applications, content diffusion on cellular phones, wireless
transmission, etc. require to go beyond the reduction by one-third achieved
with A-law and p-law encoding techniques. Moreover, user expectations cor-
respond now to CD-like quality and any degradation with respect to such a
perceptual level would not be accepted. For this reason, several efforts were
made in the last decade to improve encoding approaches.

MPEQG is the standard for multimedia (see Chapter 3), its digital audio
coding technique is one of the major results in audio coding and it involves
several major changes with respect to the linear PCM. The first is that the
MPEG architecture is organized in Layers containing sets of algorithms of
increasing complexity. Table 2.1 shows the bit-rates achieved at each layer
and the corresponding compression rates with respect to the 16-bit linear
PCM.

The second important change is the application of an analysis and syn-
thesis approach implemented in layers I and II. This consists in representing
the incoming signals with a set of compact parameters, in the case of sound
frequencies, which can be extracted in the encoding phase and used to recon-
struct the signal in the following decoding step (for a detailed description of
the algorithms of the first two layers, see [29]). An average MOS of 4.7 and
4.8 has been reported for monaural layer I and II codecs operating at 192 and
128 kbits/sec [25].

Table 2.1. MPEG audio layers. This table reports bit-rates (central column) and
compression rates (right column), compared to CD bit-rate, achieved at different
layers in the MPEG coding architecture. The compression rate is the ratio between
CD and MPEG bit-rate at the same audio quality level.

Layer Bit-rate Compression

I 384 kb/sec 4
II 192 kb/sec 8
III 128 kb/sec 12
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The third major novelty is the application of psychoacoustic principles
capable of identifying and discarding perceptually irrelevant frequencies in
the signal. By perceptually irrelevant it is meant that a frequency cannot be
perceived by human ears even if it is present in the signal, thus it can be
discarded without degradation of the perceptual quality. Such an approach
is called perceptual coding and, since part of the original signal is removed,
the encoding approach is defined lossy. The application of the psychoacoustic
principles is performed at layer III and it reduces by 12 the bit-rate of the
linear PCM while achieving an average MOS between 3.1 and 3.7 [25]. The
MPEG layer 111 is commonly called mp3 and it is used extensively on the web
because of its high compression rate (see Table 2.1). In fact, the good tradeoff
between perceptual quality and size makes the mp3 files easy to download
and exchange. The format is now so popular that it gives the name to a new
class of products, i.e. the mp3 players.

The main improvements of the mp& with respect to previous formats come
from the application of perceptual coding. Section 2.4.4 provides a description
of the main psychoacoustic phenomena used in mp3.

2.4.3 AAC Digital Audio Coding

The acronym AAC stands for advanced audio coding and the corresponding
encoding technique is considered as the natural successor of the mp3 (see the
previous section) [29]. The structures of mp3 and AAC are similar, but the
latter improves some of the algorithms included in the different layers.

AAC contains two major improvements with respect to mp3. The first is
the higher adaptivity with respect to the characteristics of the audio. Different
analysis windows (see Section 2.5) are used when the incoming sound has
frequencies concentrated in a narrow interval or when strong components are
separated by more than 220 Hz. The result is that the perceptual coding gain is
maximized, i.e. most of the bits are allocated for perceptually relevant sound
parts. The second improvement is the use of a predictor for the quantized
spectrum. Some audio signals are relatively stationary and the same spectrum
can be used for subsequent analysis frames (see Section 2.5). When several
contiguous frames use the same spectrum, this must be encoded only the first
time and, as a consequence, the bit-rate is reduced. The predictor is capable
of deciding in advance wheather the next frame requires to compute a new
spectrum or not.

In order to serve different needs, the AAC provides three profiles of decreas-
ing complexity: the main profile offers the highest quality, the low-complexity
profile does not include the predictor and the sampling-rate-scaleable profile
has the lowest complexity (see [26] for details about each profile). The main
profile AAC has shown higher performance the other formats in several com-
parisons®: at a bit-rate of 128 kb/sec, listeners cannot distinguish between

3 The results can be found on www.apple.com/quicktime/technologies/aac/.
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original and coded stereo sound. If the bit-rate is decreased at 96 kb/sec,
AAC has a quality higher than mp3 at 128 kb/sec. On the other hand, if both
AAC and mp3 have a bit-rate of 128 kb/sec, the AAC shows a significantly
superior performance.

2.4.4 Perceptual Coding

The main issue in perceptual coding is the identification of the frequencies that
must be coded to preserve perceptual quality or, conversely, of the frequencies
that can be discarded and for which no bits must be allocated. The selection, in
both above senses, is based on three psychoacoustic phenomena: the existence
of critical bands, the absolute threshold of hearing (TOH) and the masking.
Critical band analysis has been introduced at the end of Section 2.2, the other
two phenomena are briefly described in the following.

Section 2.2 defines the TOH as the lowest energy that a signal must carry
to be heard by humans (corresponding to an intensity Iy = 102 Watts per
square meter). This suggests as a first frequency removal criterion that any
spectral component with an energy lower than the TOH should not be coded.
However, perceptual experiments have shown that the above TOH does not
apply to any frequency and that the minimum audible energy is a function of

F [12):

F\ " —0.6(-£;—3.3)2 s f !
Ty(f) =3.64 <103> — 6.5e 103 +10 (103) (dBSPL).
(2.39)

The function T, (f) is referred to as absolute TOH and it enables to achieve
better bit-rate reduction by removing any spectral component with energy
Ey < T,y(fo). Absolute TOH is plotted in Figure 2.9, the lowest energy values
correspond to frequencies ranging between 50 and 4000 Hz, not surprisingly
those that propagate better through the middle ear (see Section 2.2). The
main limit of the T, (f) introduced above is that it applies only to pure tones
in noiseless environments, while sounds in everyday life have a more complex
structure. In principle, it is possible to decompose any complex signal into a
sum of waves with a single frequency fy and to remove those with energy lower
than T, (fy), but this does not take into account the fact that the perception
of different frequencies is not independent.

In particular, components with a certain frequency can stop the perception
of other frequencies in the auditory system. Such an effect is called masking
and it modifies significantly the curve in Figure 2.9. The waves with a given
frequency f excite the auditory nerves in the region where they reach their
maximum amplitude (the nerves are connected to the cochlea walls). When
two waves of similar frequency occur together and their frequency is around
the center of a critical band (see Section 2.2), the excitation induced by one of
them can prevent from hearing the other. In other words, one of the two sounds
(called masker) masks the other one (called maskee). From an encoding point
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Fig. 2.9. Absolute TOH. The TOH is plotted on a logarithmic scale and shows how
the energy necessary to hear frequencies between 50 and 4000 kHz is significantly
lower than the energy needed for other frequencies.

of view, this is important because no bits accounting for maskee frequencies
need to be allocated in order to preserve good perceptual quality. The inclusion
of masking in audio encoding is a complex process (see [29] for a detailed
description for application in MPEG coding). For the sake of simplicity, we will
show only how masker and maskee frequencies are identified in the two most
common cases: tone masking noise (TMN) and noise masking tone (NMT).

The first step is to find tone and noise frequencies. The f values cor-
responding to masker tones are identified as peaks in the power spectrum
with a difference of at least 7 Barks with respect to neighboring peaks. Noise
maskers are detected through the geometric mean of frequencies represented
between to consecutives tonal maskers. TMN takes place when noise masks
tones with lower energy. Empirical models show that this happens when the
difference between tone and noise energies is below a threshold 77 (b) that can
be calculated as follows:

Tr(b) = Ex — 6.025 — 0.275 - g + Sy (b — g) (2.40)

where b and g are the Bark frequencies of tone and noise, respectively, E is
the noise energy and S, (h) is the spread of masking function given by

Sp(h) = 15.81 + 7.5 - (b + 0.474) — 17.5y/1 + (h + 0.474)2 (2.41)
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where h is the Bark frequency difference between noise and tone. The expres-
sion of the threshold for the NMT is similar:

Ty (b) = B —2.025 — 0.175 - g + Sy (b — g) (2.42)

where Er is the tone energy. Although Equations (2.40) and (2.42) seem to
be symmetric, there is an important difference between TMN and NMT: in
the first case only tones with signal-to-mask ratio (SMR) between -5 and 5 dB
can be masked, while in the second case the SMR range where the masking
takes place is between 21 and 28 dB. A tone can thus mask noise with energies
roughly 100 to 1,000 times higher, while a noise can mask tones with energies
from around one-third to three times its energy. The lower plot in Figure 2.9
shows the effect of a masking tone noise of frequency 1 kHz and energy 69
dB. The energy necessary to hear frequencies close to 1 kHz is significantly
higher than the corresponding TOH and this enables to reduce the number
of bits necessary to encode the frequency region where masking takes place.

2.5 Time-Domain Audio Processing

The result of the acquisition process is a sequence of quantized physical mea-
sures {s[n]} = (s[1], s[2], ..., s[N]). Since both n and s[n] are discrete, such se-
quences are referred to as digital signals and their form is particularly suitable
for computer processing. This section presents some techniques that extract
useful information from the analysis of the variations across the sequences. The
corpus of such techniques is called time-domain audio processing in opposition
to frequency-domain techniques which operate on frequency distributions (see
Appendix B for more details).

After presenting the fundamental notion of system and related properties,
the rest of this section focuses on how to extract information related to energy
and frequency. The subject of this section is covered in more detail in several
speech and signal processing texts [15][22][33].

2.5.1 Linear and Time-Invariant Systems

Any operator T mapping a sequence s[n| into another digital signal y[n] is
called discrete-time system:

yln] = T{s[n]}, (2.43)

the element y[n] is a function of a single sample s[n], of a subset of the samples
of {s[n]} or of the whole input digital signal {s[r]}. In the following, we show
three examples corresponding to each of these situations: The ideal delay
(function of a single sample), the moving average (function of a subset), and
the convolution (function of the whole signal).

The ideal delay system is as follows:
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y[n] = s[n — no] (2.44)

where ng is an integer constant and y[n] is function of the the only sample
s[n — ng]. The moving average is:

K>
yln] = m k;{ s[k] (2.45)

where K7 and K, are two integer constants and y[n] = T'{s[n]} is function of
the samples in the interval between n — Ky and n+ K. The expression of the

convolution is:
o0

yln] = Z s[k]w[n — k] (2.46)

k=—o00

where wn] is another digital signal and y[n] is a function of the whole sequence

{s[n]}.

A system is said linear when it has the following properties:

T{s1[n] + sa[n]} = T{s1[n]} + T{s2[n]}

T{asn]} = aT{s[n]} (2.47)

where s1[n] and sq[n] are two different digital signals and a is a constant. The
first property is called additivity and the second homogeneity or scaling. The
two properties can be combined into the so-called superposition principle:

T{asi[n] + bsa[n]} = aT{s1[n]} + bT{s2[n]}. (2.48)
Given a signal §[n] = s[n — ng|, a system is said to be time invariant when:
gln] = T{8[nl} = yln — no). (2.49)

The above equation means that a shift of the origin in the input digital signal
determines the same shift in the output sequence. In other words, the effect of
the system at a certain point of the sequence does not depend on the sample
where T starts to operate.

When a system is LTI, i.e. both linear and time-invariant, the output se-
quence y[n| can be obtained in a peculiar way. Consider the so-called impulse,
i.e. a digital signal d[n] such that é[n] = 1 for k¥ = 0 and §[n] = 0 otherwise,
the output of a system can be written as follows:

y[n) :T{ Z s[k;]é[n—k]} = Z slk)T{d[n — K]}, (2.50)

k=—oc0 k=—o0

and the above equation can be rewritten as:

y[n] = Z slk]h[n — k] (2.51)
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which corresponds to the convolution between the input signal s[n] and hln —
k], i.e. the response of the system to an impulse at time n. As a consequence,
an LTT system is completely determined by its impulse response h[n], in the
sense that h[n] can be used to obtain y[n] for any other input signal s[n]
through a convolution operation s[n] * h[n]. *

2.5.2 Short-Term Analysis

Figure 2.11 shows a speech waveform sampled at 8 kHz. Such a value of F’
is common for spoken data because the highest formant frequencies in the
human voice are around 4 kHz (see Section 2.2) and the lowest point of the
absolute TOH curve for the human auditory system corresponds roughly to
such frequency (see Figure 2.9). Speech data are thus low-pass filtered at
4 kHz and sampled at 8 KHz to meet the sampling theorem conditions. The
waveform of Figure 2.11 shows two important aspects: the first is that different
segments of the signal have different properties (e.g. speech and silence), the
second is that the signal properties change relatively slowly, i.e. they are stable
if an interval short enough is taken into account (e.g. 20 — 30 ms). Such
assumptions underly the short-term analysis, an approach which takes into
account segments short enough to be considered as sustained sounds with
stable properties.

In mathematical terms this means that the value of the property Q[n] at
time nT, where T = 1/F is the sampling period, can be expressed as follows:

QInl= > K(s[m))w[n —m] (2.52)

m=—0o0

where K is a transform, either linear or nonlinear, possibly dependent upon a
set of adjustable parameters, and w[n] is the so-called analysis window. Two
analysis windows are commonly applied: the first is called rectangular and the
second is called Hamming. The latter has been introduced to avoid the main
problems determined by the rectangular window, i.e. the presence of too high
secondary lobes in the Fourier transform (see Appendix B). The rectangular
window is defined as follows:

1:0<I<N-1
wn]=4¢0:1<0
0:1>N

and the Hamming window:

4 The advantages of this property are particularly evident in the frequency domain.
In fact, the Fourier transform of a convolution between two signals corresponds
to the product between the Fourier transforms of the single signals, and this
simplifies significantly the analysis of the effect of a system in the frequency
domain.
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0.54 — 0.46cos(#2%) : 0 <I< N —1
win] =40 11<0

0 :1>N.

In both above cases, as well as for any finite window, it is necessary to
set the parameter N, the so-called window length. The value of N must be
the tradeoff between two conflicting requirements: the first is that the window
must be short enough to detect rapid changes of @), the second is that it must
be long enough to smooth local random fluctuations. Moreover, no window
length gives satisfactory results for every application and different choices
must be made for different tasks. In the case of spoken data, it is common to
have a window corresponding to few fundamental periods 70 = 1/F0, where
F0 is the fundamental frequency (see Section 2.2). In more general terms, the
problem is addressed by observing that the variations of @) can be studied
through the Fourier transform (FT) of Q[n] (the unexperienced reader can
move directly to Section 2.5.3). In this case high frequencies in the spectrum
correspond to rapid @ variations, while low frequencies components are due
to slow changes.

Since Equation (2.52) can be interpreted as a discrete convolution, the FT
of Q[n] can be obtained as a product of the FT’s of K(s[n]) and w[n]. The
effect of N on the frequency with which @) changes can thus be evaluated
through the FT of the window. Figure 2.10 shows the spectra of rectangular
windows of different length. The windows act as a low-pass filters with cutoff
frequencies f, = F/N (f, = 2F/N for the Hamming windows). The conse-
quence is that the longer is the window, the narrower is the band of accepted
frequencies. In other words, long windows tend to mask rapid changes and
vice versa for short windows. In speech recognition (see Chapter 12) the win-
dow is typically 10-30 ms long. The reason is that physiological measurements
performed using X-rays have shown that during such a time humans cannot
significantly change the shape of the vocal tract.

2.5.3 Time-Domain Measures

This section presents the most important properties that can be extracted
from a signal in the time domain. All of the properties are obtained with a
short-term approach and provide a rough but meaningful representation of
the audio signals (particular attention will be paid to speech data).

The first two properties are short-time energy and average magnitude.
They carry the same kind of information, but the second one is less sensitive
to local fluctuations. They are especially important to detect silences or to
distinguish between voiced and unvoiced segments in spoken data, but they
also play a role for the reduction of the bit-rate during the quantization. In
fact, higher quantization errors can be allowed for higher energy signals (see
Section 2.3). The short-time energy E[n] of a signal can be extracted through
the following convolution:
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Fig. 2.10. Window effect in the frequency domain. The three plots show the spec-
trum of rectangular windows of length 128, 64 and 32 ms, respectively. All spectra
show a first minimum in correspondence of f, = F/At Hz, where At is the length of
the window. This means that variations of frequency higher than f, are filtered and
that longer windows tend to smooth higher frequency variations (and vice versa).

Eln] = Z s [njwn — m). (2.53)

m=—0o0

The use of the square makes E[n] too sensitive to the highest values of s[n]
that can be due to local random fluctuations. Moreover, the lowest energy
parts of the signal tend to be suppressed as it can be observed in Figure 2.11:
the energy of the unvoiced phonemes at the end of the word siz is so much
lower than the other parts of the words that it can be difficult to distinguish
them with respect to the silence. For this reason, E[n] is often replaced with
the short-term average magnitude M [n):

oo

M(n] = Z |s[n]w[n — m]|. (2.54)

m=—0o0

The dynamic range of M|[n] is smaller and the differences are smoother
than in the E[n] case. This can be seen at the end of the word siz in Figure 2.11
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Fig. 2.11. Time domain processing. The plots show (from the top to the bottom) a
waveform, the short-time energy, the short-time average magnitude, the short-time
average zero crossing rate. The sampling rate is 8000 Hz and the window is 12.5 us
long.

where the unvoiced phonemes have an average magnitude lower, but still
comparable with the M[n] value of voiced phonemes.

The length of the window should correspond more or less to a pitch pe-
riod (see Section 2.2). Shorter windows detect uninteresting local fluctuations,
while longer windows miss changes that should not be neglected. Since the
pitch of human voices ranges between 50 (for male voices) and 400 kHz (for
small children and women), no window length is optimal for any case, How-
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ever, satisfactory results can be achieved, on average, with a 20-30 ms long
analysis frame. Energy and magnitude are often used as features in speech
recognition systems [15] as well as in multimedia content analysis where they
have been applied to detect emotional states [18], to identify audio segments
likely to attract the attention [20], to perform affective analysis [14].

Another important aspect of a signal is the frequency content. This is typ-
ically obtained through the Fourier transform (see Appendix B), but a simple
time domain measure, called short time average zero-crossing rate ZCR, en-
ables us to obtain a rough idea of the frequencies represented in the data.
Such a measure can be obtained as follows:

Z[n] = % Z |sign(s[m]) — sign(s[m — 1])|w[n — m] (2.55)

m=—0oo

where w(l) is a rectangular window of length N. If s(¢) is a sinusoid of fre-
quency f, then there are two zero crossings every T seconds, where T = 1/f.
If s(t) is sampled at a rate F > 2f for a time At corresponding to a high
multiple of T, the average number of zero crossings Z can be obtained as
follows:

Z ~ E

F

where f/F is nothing else than the number of sinusoid cycles per sampling
period. For this reason, Z[n| provides a rough description of the frequency
content in s[n]. The lowest plot of Figure 2.11 shows the value of Z[n] for
the spoken utterance used as example so far: on average, the Z[n] value is
between 0.1 and 0.2 in the spoken segments and this corresponds, using Equa-
tion (2.56), to frequencies between 400 and 800 Hz. This is compatible with
the fact that the speaker is a woman (and the fundamental frequencies are up
to 300 Hz for women) and with the fact that the energy of the speech tends
to concentrate below 3000 Hz. The value of Z[n] in the silence segments is,
on average, between 0.5 and 0.6 and this accounts for frequencies between
2000 and 2400 Hz. The reason is that the energy of nonspeech segments is
concentrated on high-frequency noise. However, the above frequencies values
must be considered indicative and must be used to discriminate rather than to
describe different segments. The ZCR has been used in several audio process-
ing technologies including the detection of word boundaries [32], speech-music
discrimination [8][34], audio classification [19].

The property examined next is the autocorrelation function ¢[k] which has
a different expression depending on the kind of signal under examination. For
finite energy signals ¢[k] is defined as follows:

(2.56)

o0

olk] = Z s[m]s[m + k. (2.57)

m=—0o0

A signal is said to be finite energy when the following sum is finite:
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E= > ] (2.58)

n=—oo

for constant power signals the expression is:

N
ok = lim — Z s[m + k. (2.59)

A signal is said to be constant power when the following sum is constant:

T

P= Y s’[ng—n] (2.60)

n=—T

for any ng and T'. P can be thought of as the signal power, i.e. the average sig-
nal energy per time unit. The autocorrelation function has several important
properties. The first is that if s[n] = s[n+mp], where m is an integer number,
then ¢[k] = ¢[k + mp]. in other words, the autocorrelation function of a peri-
odic signal is periodic with the same period. The second is that ¢[k] = ¢[—F],
i.e. the autocorrelation function is even and it attains its maximum for k = 0:

|¢[k]] < 0[0]  VE. (2.61)

The value of ¢[0] corresponds to the total energy of the signal which is thus
a particular case of the autocorrelation function.

Equation (2.57) is valid for the signal as a whole, but in audio processing
the analysis is performed, in general, on an analysis frame. This requires the
definition of a short-term autocorrelation function:

R, k] = Z s[m)w[n — m]s[m + klwn —m — k]. (2.62)

m=—0o0

Such an expression corresponds to the value of ¢[k] calculated over the in-
tersection of two windows shifted by k& sampling periods with respect to each
other. If & > N (where N is the window length), then R,[k] = 0 because
there is no intersection between the two windows.

The short-term properties considered so far (energy, average magnitude
and average ZCR) provide a single value for each analysis frame identified
by a specific position of the window. This is not the case of the short-time
autocorrelation function which provides, for each analysis frame, a function of
the lag. Figure 2.12 shows the short-term autocorrelation function obtained
from a window of length N = 401 (corresponding to 50 ms). Upper and lower
plots have been obtained over a speech (¢t = 1.2 sec. in Figure 2.11) and a
silence segment (¢ = 1.5 sec. in Figure 2.11) respectively. In the first case
there are clear peaks appearing roughly every 5 msec, and this corresponds to
a fundamental frequency of around 200 Hz. In the second case no periodicity
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Fig. 2.12. Short term autocorrelation function. Upper and lower plots show the
short term autocorrelation function for a speech and a silence point respectively.
The plot in the silence case does not show any periodicity, while in the speech case
there are peaks appearing roughly every 5 msec. This corresponds to a fundamental
frequency of around 200 Hz, a value compatible with the ZCR measures made over
the same signal and with the fact that the speaker is a woman.

is observed and R, [k] looks rather like a high-frequency noise-like waveform.
The autocorrelation function can thus be used as a further description of the
frequency content that can help in discriminating different parts of the signal.
Figure 2.12 shows that the amplitude of R,[k] decreases as the lag increases.
The reason is that for higher values of k the intersection between the two
windows decreases and there are less addends in the sum of Equation (2.62).

The autocorrelation function has been used to detect the music meter [6],
pitch detection [31], music and audio retrieval [13][37], audio fingerprint-
ing [36], and so on.

Problems

2.1. Consider a sound of intensity I = 5 dB. Calculate the energy emitted
by its source in a time interval of length At = 22.1 s. Given the air acoustic
impedance Z = 410 Pa - s-m™!, calculate the pressure corresponding to the
maximum compression determined by the same sound wave.

2.2. Human ears are particularly sensitive to frequencies between 50 and 4000
Hz. Given the speed of sound in air (v ~ 331.4 m - s~!), calculate the wave-
lengths corresponding to such frequencies.
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2.3. Consider a sum of N sinusoids with frequencies fo, 3 fo,..., (2N + 1) fo:

=3 2n1+ sinf2mfo(2n + 1)1 (2.63)

Plot f(t) in the range [0,10] for fo =1 and N =1,2,...,100 and observe the
signal f(t) converges to.

2.4. The Mel scale (see Section 2.2.3) maps frequencies f into values B(f)
that are more meaningful from a perceptual point of view. Segment the B(f)
interval [0,3375] into 20 intervals of the same length and find the frequencies
f corresponding to their limits.

2.5. Extract the waveform from an audio file using HTK (see Chapter 12 for a
description of the HTK software package) and calculate the number of bits NV
necessary to represent the sample values. Perform a uniform quantization of
the waveform using a number of bits n ranging from 2 to IV — 1 and calculate,
for each n, the signal-to-noise ratio (SNR). Plot the SNR as a function of n.

2.6. Calculate sampling frequency and bit-rate of the audio file used in Prob-
lem 2.5.

2.7. Plot the TOH in presence of a masking tone noise of frequency 200 Hz
and intensity 50 dB.

2.8. Consider the system known as moving average (see Section 2.5). Demon-
strate that such system is linear and time invariant.

2.9. Consider an audio file including both speech and silence and extract the
waveform it contains. Obtain magnitude and zero crossing rate as a function
of time using a rectangular analysis window 30 ms long. A pair (M[n], Z[n])
is available for each sample s[n] and can be plotted on a plane where the axes
are magnitude and ZCR. Do sound and speech samples form separate clusters
(see Chapter 6)7

2.10. Demonstrate that the autocorrelation function R,,[k] corresponds to the
short time energy when k = 0 and that | R, [k]| < R,[0] for k£ > 0.
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3

Image and Video Acquisition, Representation
and Storage

What the reader should know to understand this chapter

e Flementary notions of optics and physics.
e Basic notions of mathematics.

What the reader should know after reading this chapter

Human eye physiology.

Image and video acquisition devices.
Image and video representation.

Image and video formats and standards.
Color representation.

3.1 Introduction

The eye is the organ that allows our brain to acquire the visual information
around us. One of the most challanging tasks in the science consists in devel-
oping a machine that can see, that is it can acquire, integrate and interpret
the visual information embedded in still images and videos. This is the topic of
scientific domain called image processing. The topic of image processing is so
large it cannot be described in a single chapter. Therefore for comprehensive
surveys of this topic, the reader can refer to [10][23][27].

The aim of this chapter is to provide an introduction to the image and
video acquisition, representation and storage. Image representation is the first
step towards the realization of an image processing system (IPS) and a video
processing system (VPS). A crucial aspect in the realization of an IPS and
a VPS is the memory occupation. Therefore, we will pay special attention to
image and video storage, describing the main formats.

The chapter is organized as follows: Sections 3.2 and 3.3 present, respec-
tively, human eye physiology and the image acquisition devices; Section 3.4
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discusses the color representation; Section 3.5 presents the main image formats
paying special attention to JPEG; Sections 3.6 and 3.7 review video principles
and the MPEG standard; in Section 3.8 some conclusions are drawn; finally,
some problems are proposed at the end of the chapter.

3.2 Human Eye Physiology

Electromagnetic radiation enters the human visual system through eyes and
is incident upon the cells of the retina. Although human eyes can detect still
images, they are mainly motion detectors. The eyes can identify static objects
and establish spatial relationships among the different objects in a scene. Basic
eye activity depends on comparing stimuli from neighboring cells. When we
observe a static scene, our eyes perform small repetitive movements called
saccadic that move edges past receptors. The perceptual recognition of human
vision [30] takes place in the brain. The objects in a scene are recognized in the
brain by means of their edges. The information about the object is embedded
along these edges. The recognition process, i.e. the perceptual recognition, is
a result of learning that is performed in the neural organization of the brain.

3.2.1 Structure of the Human Eye

The human eye, whose structure is shown in Figure 3.1, is the organ that gives
us the sense of sight. Light reflected from an object enters the eye through the
cornea, which is the clear dome at the front of the eye. Then the light enters
through the pupil, the circular opening in the center of iris. The light passes
through the crystalline lens, which is located immediately behind the iris and
the pupil. Initially, the light waves are converged first by the cornea and then
by the crystalline lens to a nodal point located immediately behind the back
surface of the crystalline lens. At this stage of vision process, the image is
reversed (turned backwards) and inverted (turned upside-down). The light
passes through the vitreous humor, the clear gelatin that forms 80% of the
overall volume of the eye. Finally, the light is focused on the retina which is
located behind the vitreous humor. We can consider the eye a type of camera,
as shown in Figure 3.2. In this metaphor the retina plays the role of the film,
recording the light photons that interact with the retina.

The transport of the visual signal from the retina of the eye to the brain is
performed through 1.5 million neurons by means of optic nerves. The human
retina contains a big number of photorececeptors organized in a hexagonal
array. The retinal array has three kinds of color sensors (or comes) in the
central part of the retina (fovea centralis). The cone density is high in the
fovea centralis and is low near the peripheral part of the fovea. In the retinal
array there are three different kinds of cones, i.e. red, green and blue sensitive
cones. These cones are responsible of color vision. The three cone classes have
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Fig. 3.1. The human eye (picture by Matthias Dolder).

different photosensitive pigments. The three pigments have maximum absorp-
tions at a wavelength of ~ 4,300, 5,300 and 5,600 Angstrom (one Angstrom
is equal to 1071%m) which correspond, respectively, at wviolet, blue-green and
yellow-green.

The space between the cones is filled by rods which are responsible for
gray vision. The number of rods is larger than the number of cones.

Rods are sensitive to low levels of illuminations and are responsible for the
human capability of seeing in dim light (scotopic light). The cones work at
high illumination levels when many photons are available and the resolution
is maximized at the cost of reduced sensitivity.

The optic nerve in human visual systems enters the eyeball and is put in
connection with rods and cones. It starts as axon benches from the ganglion
cells on one side of the retina. On the other side of the retina rods and cones
are connected to the ganglion cells by means of bipolar cells. Besides, there
are also horizontal nerve cells making lateral connections. The horizontal cells
fuse signals from neighboring receptors in the retina forming a receptive field
of opposing responses in the center and the periphery. Therefore a uniform
illumination produces no stimulus. When the illumination is not uniform, a
stimulus is produced. Some receptive fields use color differences. Therefore the
color differences, in a similar way the one of illumination, produces stimuli,
too.

In the human retina, the number of cones can vary from six to seven
millions, whereas the number of rodes ranges from 110 to 130 millions of
rods. Transmission of the optical signals from rods and cones is performed
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Fig. 3.2. The human eye can be viewed as a type of camera (pictures by Matthias
Dolder).

by means of fibers in the optic nerve. The optic nerve crosses at the optic
chiasma. In the chiasma the signal are dispatched to the brain, in particular
the signals coming from the right and the left side of the retinas of two eyes
are dispatched, respectively, to the right and the left halves of the brain. Each
half of the brain receives half a image, so the loss of an eye in a person does
not mean full blindness. The extremities of the optical nerve reach the lateral
geniculate bodies and dispatch the signals to the wvisual cortex. The visual
cortex has the same topology of the retina and represents the first step in the
human visual perception since at this stage the visual information is available.
Visual regions in two brain hemispheres are connected in the corpus callosum,
which joins the visual field halves.

3.3 Image Acquisition Devices

A digital image acquisition is formed by two components, that is a digital
camera and a host computer where the images acquired by the digital camera
are stored. In the following sections we briefly describe how a digital camera
works.

3.3.1 Digital Camera

Digital cameras generally use either charge coupled devices (CCD) or comple-
mentary metal oxide semiconductor (CMOS) sensors and they can be grouped
based on which of them they use.

In the CCD camera there is a n x m rectangular grid of photo diodes
(photosensors). Each photosensor is sensitive to light intensity. The intensity
(or luminous intensity) is a measure of the power emitted by a light source
in a particular direction. For the sake of simplicity, we can represent each
photosensor with a black box that converts light energy into a voltage. The
CCD array produces a continuos electric signal.
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The structure of the CMOS camera is similar to the CCD one; the only
difference is that the photo diode is replaced by a CMOS sensor. In each
CMOS sensor there is a number of transistors that are used for the electric
signal amplification. Since several transistors are used, the light sensitivity
is lower since some photons are incident on the transistors instead of the
photosensors. CMOS sensors are noisier than CCD sensors, but they consume
less power and are less expensive.

When there is bright sunlight the camera aperture! does not have to be
large since the camera does not require much light. On the other side, if
the sunlight is not much, for instance when the sun is at sunset, the camera
aperture has to be enlarged since the camera needs more light to form the
image. The camera works like the human eye. The shutter speed? permits
getting a measure of the exposure time of the camera to the light. In relation
with the light requirement, the shutter opens and closes for an amount of time
equal to the exposure time.

The focal length of a digital camera is given by the distance between the
focal plane of the lens and the surface of the sensor grid. Focal length allows
us to select the magnification degree which is requested to the digital camera.

The elementary unit of the digital image is the pizel, which is an abbre-
viation of picture element. A digital camera can capture images at different
resolutions, i.e. using a different amount of pixels. A digital camera that works
in low resolution usually represents an image using a matrix of 320 x 240
(or 352 x 288) pixels, whereas in medium resolution each image is generally
represented by means of 640 x 480 pixels. At high resolution the image is
represented by 1216 x 912 (or 1600 x 1200) pixels. The spatial resolution of
an image is the image size in pixels, for instance 640 x 480, which corresponds
to the size of the CCD (or CMOS) grid.

Finally, we define two important parameters of the digital camera, i.e. the
field of view and the sensor resolution. The field of view (or FOV') is the area
of the scene that the digital camera can acquire. The FOV is fixed equal to
the horizontal dimension of the inspection region that includes all the objects
of interest. The sensor resolution (or sensor size) SR of a digital camera is
given by:

Fov

SR=2"— 3.1
OR (3.1)

where OR stands for the minimum object resolution, i.e. the dimension of the
smallest object that can be seen by the camera.

! The aperture controls the amount of light that reaches the camera sensor.

2 In a camera, the shutter is a device that allows light to pass for a determined
period of time, with the aim of exposing the CCD (or CMOS) sensor to the
required amount of light to create a permanent image of view. Shutter speed is
the time that the shutter is open.
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Color Acquisition

In this section we briefly review the process of color acquisition in the digital
cameras. There are many methods for capturing colors. The typical approach
uses red, green and blue (RGB) filters. The filters are spun in front of each
sensor sequentially one after another, and separated images in three colors
are stored at a fast rate. The digital camera acquires RGB components, given
by the light intensity in the three wavelength bands, at each pixel location.
Since each color component is represented by 8 bits it can assume 256 different
values. Hence the overall amount of different colors that can be represented
are 2563 colors, i.e. each pixel can assume one among 16,777,216 colors.

When we use the RGB filter strategy we make the implicit assumption
that the colors in the image do not have to change passing from one filter to
another one. This assumption in some cases cannot be fulfilled.

An alternative solution to RGB strategy is based on the color interpola-
tion (or demosaicing). Demosaicing is a cheaper way of recording the RGB
components of an image. According to this method only one type of filter over
each photosensor is permanently placed. The sensor placements are usually
carried out in accordance with a pattern. The most popular placement is the
so-called Bayer’s pattern [3]. In the Bayer’s pattern each pixel is indicated by
only one of the RGB components, i.e. the pixel is red, or green, or blue. It
can make accurate guesses about the missing color component in each pixel
location by means of demosaicing [24] [28].

High-quality cameras use three different sensors with RGB filters, i.e. one
sensor for each RGB component. The light is directed to the sensors by means
of a beam splitter. Each sensor responds to a narrow color wavelength band.
Hence the camera acquires each of three colors for any pixel.

Grayscale Image

A grayscale (or graylevel) image is simply one in which the only colors are
shades of gray. The reason for differentiating such images from any other sort
of color image is that less information needs to be provided for each pixel.
Since a “gray” color is one in which the red, green and blue components all
have equal RGB components, it is only necessary to specify a single intensity
value for each pixel, unlike the three RGB components required to specify
each pixel in a full color image. The grayscale intensity is stored as an 8-
bit integer giving 256 possible different shades of gray from black to white.
Grayscale images are entirely sufficient for many tasks (e.g. face recognition)
and so there is no need to use more complicated and harder-to-process color
images.
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Fig. 3.3. A graylevel image

3.4 Color Representation

The elaboration of color images in image processing has been receiving more
attention. This section introduces the basic principles underlying the human
perception of color and reviews the main color models.

The light reflected from an object is absorbed by the cone cells and leads
to the color perception. As we saw in Section 3.2, there are in the retina three
different cone classes responsible for color perception. The human nervous
system is sensitive to light intensity differences across different cones.

In this section we present the principles of human color perception and
describe the main color models [18][29][30].

3.4.1 Human Color Perception

The electromagnetic radiation is perceptible by the human eye when its
wavelength is between 4,000 and 7,700 Angstrom, i.e. between 4 * 107 and
7.7 %1077 m . The wavelengths of 4,000 and 7,700 correspond, respectively,
to violet and red.

A color image can be represented as a function C(z,y, A) where (z,y) in-
dividuates the point in the image and A is the wavelength of the light reflected
from the object. A monochromatic image is an image acquired in a fixed wave-
length A. The existence of three spectral perception functions Vi(A), V()
and Vg (\), which correspond to three different types of cones, is the basis
of color vision. The functions Vg(A), Vg(A) and Vg(A) are maximal when
the wavelengths are, respectively, 4,300, 5,300 and 5,600 Angstrom. These
wavelengths do not correspond exactly to blue, green and red. Hence some
researchers use the the nomenclature of short-wavelength, medium-wavelenght
and long-wavelength instead of the more popular R, G and B cones. The cones
provide the human brain with color vision (photopic vision) and can distin-
guish small wavelength modifications. The eye sensitivity changes with the
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wavelength and the maximum sensitivity corresponds to 5,070 Angstrom. An
object in a scene, as perceived by an image acquisition device (e.g. a camera,
a human eye), can be represented by a radiance function R(\,x,y) where A
is the wavelength of a particular color at the point (z,y) of the scene. Weber
formulated a relationship ( Weber’s law) between the physical stimuli from an
object (e.g. the monitor luminance) and the subjective human perception. If
we define Wy, as the just noticeable difference (JND) in the brightness® re-
quired for distinguishing L and L+ W, the following equation ( Weber’s law)
holds:

Wi,

L

where k is a constant, whose value is ~ 0.015.

Weber’s law states that the larger the brightness L the larger the increase
W, required to perceive the difference between two objects of brightness L
and L + Wp. On the other hand, distinguishing two objects of low brightness
is much easier. If we have an object whose brightness is 1—L0, the increase in
brightness w; to distinguish another object will be smaller, that is will be one
tenth of W7p,.

More accurate investigations have proved that Weber’s law does not always
hold. In particular cases Weber’s law has to be substituted by more precise

formulae. For further informations, readers can refer to [5].

=k (3.2)

Color Quantization

Actual computer monitors have generally 256% (i.e. 16,777,216) different col-
ors (see Section 3.3). On the other hand, a human eye can usually distinguish
only about 17,000 colors. Therefore, the usual color spaces of the actual com-
puter monitors present a large redundancy if compared with the usual require-
ments of a human user. Removing the color redundancy generally improves
the efficiency of color image processing algorithms. The color redundancy can
be eliminated by mapping the usual color space onto a new space that has
~17,000 colors (color quantization) . In this way it can simulate the human
color perception, preserving the image quality from a perceptive point of view.

The red color cones have minimum spectral sensitivity; green color cones
have the maximum sensitivity, whereas blue color cones have an intermediate
sensitivity. If we take into account the different sensitivity of three different
color cones, the best policy consists of sampling in different ways the R, G,
and B axes. Therefore, R-axis, B-axis and G-axis have, respectively, 24, 26 and
28 quantization levels. If we use these quantization levels, the overall amount
of available colors is 17,472 which is approximately the same number of the
perceived colors by the human eye. All the colors perceived can be seen as a
linear combination of the basic colors (or primaries), that is red, green and
blue. A human eye can distinguish two different colors only if there is a JND

% Brightness measures the color intensity (see Section 3.4.2).
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(see Section 3.4.1) from each other. The JND is generally not costant due
to the nonlinearity of the human vision. Buchsbaum investigated the visual
nonlinearity of the human eye and his results are supported by physiology.
For further informations, readers can refer to [5].

3.4.2 Color Models

Many color models (or color spaces) have been proposed, and in each model
color stimuli are represented by points in a three-dimensional color space.
No model clearly outperforms the others and the best choice depends on the
application. Color models [7] can be grouped in:

e Colorimetric models which are based on the physical spectral reflectance.
An example of a colorimetric model is the CIE chromaticity diagram.

e Physiologically inspired models which are based on neurophysiology. Ex-
amples of these models are the CIE XYZ and RGB models.

e Psychological models which are based on how colors are perceived by the
humans [13] [14]. An example of a psychological model is HSB.

Color models can be grouped [7] also in an alternative way:

e Hardware-oriented color models. These models are designed taking into
account the properties of the devices (e.g. computer and TV monitors,
printers) used to reproduce colors. Examples of hardware-oriented models
are RGB, CMY, YIQ and YUV.

e User-oriented color models. These models are based on human perception
of colors. Human color feel is based on hue, saturation and brightness per-
ceptions. Hue indicates the wavelength of the percepted color. Saturation
(or chroma) measures the quantity of white present in a color. Highly satu-
rated colors (or pure colors) do not have any white component. Brightness
(or walue, or intensity, or lightness) measures the color intensity. Examples

of user-oriented color models are HLS, HCV, HSV and HSB.

A review of the main color spaces is presented in the rest of the section. For
more exhaustive presentation, readers can refer to [2][11][15][20][22][23][30].

The Chromaticity Diagram

The research on color models has been carried out under the auspices of Com-
mission Internationale de I’ Eclairage* (CIE), an organization based in Paris.
In the twentieth century CIE sponsored research into color perception which
resulted in a class of mathematical models [30]. The common basis of these
models consists in a collection of color-matching experiments, where an ob-
server judges whether two parts of a visual stimulus (e.g. a figure) match
in appearance, i.e. look identical or not. By varying the composition of the

4 This is also called the International Lighting Committee.
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tristimulus

wavelength

Fig. 3.4. CIE 1931 standard observer color matching functions for virtual primaries.
Blue, green and red correspond respectively to z, y and x.

light (i.e. an electromagnetic radiation visible to human eyes.) projected onto
either part of the field of view, researchers can investigate properties of hu-
man color vision. It has been found that the light of almost any spectral
composition (i.e. any color) can be matched by mixtures of three suitable
chosen monochromatic primaries. A monochromatic primary is a light of a
single wavelength. By repeating this kind of experiment with many different
observers and averaging the results, and measuring the spectral composition
and poer of each of the light sources, the CIE has defined the so-called stan-
dard observer color matching functions (SOCMF'). Assuming that the human
visual system behaves linearly, the CIE then went on to define the SOCMF
in terms of the so-called virtual primaries. Virtual primaries are defined in
such a way that SOCMF are all positive, which is desiderable in practical ap-
plications. These primaries are called virtual since they cannot be physically
obtained. The SOCMF for the virtual primaries are shown in figure 3.4. The
SOMCEF are usually called CIE 1931 standard observer color matching func-
tions. The functions are generally indicated with Z, g, Z. These functions are
chosen such that g is proportional to the human photopic luminosity function,
which is an experimentally determined measure of the perceived brightness of
monochromatic light of different wavelengths. These functions represent the
basis of the research in color science, even though there have been many revi-
sion since 1931 [30]. If we know the spectral composition of a stimulus F(}\),
we can now determine its chromaticity coordinates as follows.
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e First, we compute the tristimulus values X, Y, Z
X = /E(A):E()\)dA (3.3)
Y = /E(A)g()\)d)\ (3.4)
7= / E(NZ(\)dA (3.5)

e Then, we compute the chromaticity coordinates
X

TTXiviz (36)
Y
YTXYY 1z (3.7)
Z
TXiviz (38)
If we add Eequations (3.6), (3.7) and (3.8) we obtain:
r+y+z=1 (3.9)

Since z =1 — (x 4+ y), « and y are adequate to specify the chromaticity of a
color. Therefore the chromaticity coordinates x, y are plotted forming the so-
called chromaticity diagram. The chromaticity diagram has several properties.
It represents every physically realizable color as a point. It has a white point
at its center, with more saturated color radiating outwards from white. When
superimposing light coming from two different sources, the resulting color
perceived lies on a straight line between the points representing the component
lights in the diagram. Moreover, we can represent the range of all colors that
can be produced, the so-called color gamut, by means of three primaries as the
triangular area of the chromaticity diagram whose vertices have coordinates
defined by the chromaticities of the primaries. Now we pass to describe the
main color models.

RGB Color Model

The RGB Color Model is the most commonly used hardware-oriented color
model. Color images in monitors and video cameras are represented in RGB
(which is an acronym of Red Green Blue) space and they are usually called
RGB images. Colors in RGB models are obtained as a linear combination of
the primary colors red, green and blue. In the RGB model, RGB coordinates
range from 0 to 1. They are connected with the tristimulus values X,Y, Z by
means of the following equations:

X = 0.490R + 0.310G + 0.200B
Y =0.177R 4+ 0.831G + 0.010B
Z = 0.000R + 0.010G + 0.990B



62 3 Image and Video Acquisition, Representation and Storage

In the RGB model, white and black are represented, respectively, by the triples
(0,0,0) and (1,1,1). red, green and blue are represented, respectively, by (1,0,0),
(0,1,0) and (0,0,1). Cyan, yellow and magenta, which are secondary colors
obtained respectively by the superposition of green and blue, red and green,
red and blue, are represented by the triples (0,1,1), (1,1,0) and (1,0,1).

CMY Model

CMY color model takes its name from the colors Cyan, Yellow, Magenta.
Although these colors are secondary, cyan, magenta and yellow are the primary
colors of pigments. Cyan, yellow and magenta are called subtractive primaries
because these colors are obtained by subtracting light from white. The CMY
model finds application in color printers. The transformations thath allow
us to pass from RGB to CMY model can be obtained transforming RGB
values into XYZ and then from XYZ coordinates into CMY. An approximate
transformation, inaccurate in some cases, that allows us to pass from RGB to
CMY model is the following:

R 1-C R
Gl=|1-M|-|G (3.10)
B 1-Y B

where R, G, B € [0,1].

YIQ and YUV Models

The YIQ model represents the grayscale information by means of the lumi-
nance Y. Whereas hue I and saturation Q express the color information and
are often called chrominance components. YIQ coordinates can be obtained
from the RGB model using the following transformation:

Y = 0.299R + 0.587G + 0.114B

I =0.596R — 0.274G — 0.322B

@ =0.211R — 0.523G' 4+ 0.312B
The YIQ model is used in NTSC (National Television Standard Committee),
which is the television standard in the USA, and for this reason is also called
the NT'SC color space.

The YUV model is similar to YIQ. The grayscale is represented by means

of the luminance whereas the chrominance components are U (or C}) and V
(or C). Cy and (or C) are respectively called blue difference component and
red difference component. YUV coordinates can be obtained from the RGB
model using the transformation (also called television law):

Y = 0.299R + 0.587G + 0.114B

U=0493(B-Y) (3.11)

V=0871(R-Y)
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Equations (3.11) fully justify the names of the chrominance components. The
YUV model is used in PAL, which is the television standard in Europe (with
the exception of France where the standard is SECAM).

User-Oriented Color Models

Although RGB, CMY and YIQ models are useful for color representation, they
are not similar to human perception. A drawback of the RGB model is the lack
of uniformity. A uniform color space is a space where the Euclidean distance
between two color points corresponds to the perceptual difference between
two corresponding colors in the human vision system. In other words, in a
nonuniform color space, two couples of color points with the same distance do
not show the same degree of perceptual difference. In imaging applications,
it is very popular the use of perceptually uniform color spaces. Hence the
nonuniform RGB space has to be transformed into any perceptually uniform
space. Before we describe these spaces, it is necessary to remark on some facts
described in the following.

Color is an attribute of human visual perception and can described by
color names such as green, blue and so on. Hue is another attribute of human
perception and can be described by primary hues (red, green, blue, purple
and yellow) or by a combination of them. Although black, white and gray are
colors, they are not classified by CIE as hues. Therefore perceived colors can
be divided into two families: achromatic colors and chromatic colors. Achro-
matic colors that are not hues (i.e. Black, White and gray); chromatic colors
that are hues. Hue, described already as a color property of light, can be also
thought as a property of the surface reflecting or transmitting the light. For
instance, a blue glass reflects blue hue. Hence hue is also an attribute of the
human perception and is the chromatic component of our perception. It can
be classified as weak hue or strong hue. The colorfulness of a color is expressed
by the saturation. For instance, the color from a single monochromatic source
of light, which yields the color of a unique wavelength, is highly saturated,
whereas the colors that have hues of different wavelengths have small chroma
and less saturation. For example, gray colors do not have hues and their sat-
uration is null (unsaturated colors). Hence the saturation can be seen as a
measure of colorfulness (or the whiteness) of the color in the human percep-
tion. The lightness (L), also called intensity (I) or value (V'), measures the
color brightness. It provides a measure of how much light is reflected from the
colored object or how much light is emitted from a region. The lightness is
proportional to the electromagnetic energy emitted by the object. Finally, the
luminosity helps the human eye in color perception. For instance, a colored
object in the darkness does not appear colorful at all. That being stated, we
pass to describe the color models based on human perception of colors (also
called user oriented color models).

The first user-oriented color model was proposed by Munsell [9][16][21]
about 90 years ago. His model, called the Munsell color space, was designed
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White

Black

Fig. 3.5. HIS color space. I, S and H indicate, respectively, intensity, saturation
and hue.

for artists and based on subjective human assessements rather tha on objective
perceptual measures (e.g. measurements of hue, saturation and brightness).
The Munsell color model uses a cylindrical coordinate scheme and is too cum-
bersome to be used in imaging application. Therefore, several approximations
of the Munsell color model have been developed. They separate luminance
from the other components, supporting in this way an intuitive notion of
color. Among these models, the most popular are HIS (hue, intensity and sat-
uration), HCV (hue, chroma and value), HSV (hue, saturation, value) and
HSB (hue, saturation, brightness). These models are closely related. Color
coordinates can be derived from RGB and XYZ models by means of generally
nonlinear equations. These models are very popular in image processing. For
the sake of space, we will only describe HIS, HSB, HSV .

The HIS model, where HIS stands for hue, intensity and saturation, can be
represented by means of a double cone (see Figure 3.5). gray is in the middle
of the axis whereas white and black are located, respectively, in the top and
in the bottom cone vertex. Hue and saturation are represented, respectively,
by the angle around the vertical axis and the distance from the central axis.
Most saturated colors are located close to the maximum circle. Primary and
secundary colors are located on the maximum circle equally spaced at 60
degrees: red, yellow, green, cyan, blue, magenta (listed counterclockwise).

The HSV model, where HSV stands for hue, saturation and wvalue, is
strictly related to HCV, HLS and HSI and it can be represented by a cone
(see Figure 3.6). Similarly to the HIS model, the cone axis represents the line
of gray. HSV coordinates can be obtained from the RGB model using different
transformation. The simplest transformation is the following:
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Fig. 3.6. HSV color space. C, G, Y, R, M,B indicate respectively cyan, green yellow,
red, magenta and blue. Black and white have, respectively, V =0 and V = 1.

V= R+G+B
3
S:l_w (3.12)
|4
H = tan 3(G - B) (3.13)

(R-G)+(R-B)|’

Note that H is undefined when S = 0.
The most popular HSV transformation is the following. Firstly, RGB val-
ues are normalized by defining:

R G B
= - = = b = . 3.14
""RtiG+B I"R+G+B’ R+G+ B (3.14)
Then H, S, V can be computed using:

V = max(r,g,b) (3.15)

0 ifV=0
S = ; 3.16
{V — minab) iy, } (8.16)

0 if S=0

60x(g—b) V=0
H={ 5V ! 3.17
60% 24 Z5]if V=g (3:17)

60 % [4+ L2 if V=0
H=H+360 ifH<O0. (3.18)

The HSB model, where HSB stands for hue, saturation and brightness, is in-
spired by Hurvich and Jameson’s opponent colors theory [14] which is based
on the observation that opponent hues (yellow and blue, green and red) erase
each other when superimposed. Hurvich and Jameson computed the relative
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quantity (chromatic response functions) of each of four basic hues present in
each stimulus at a given wavelength. Besides, Hurvich and Jameson fixed the
relative quantity of each of the four basic hues in each stimulus at a given
wavelength which represents the perceived brightness of a visual stimulus at
a given spectral composition. Hue and saturation coefficients function were
derived by means of chromatic and achromatic response functions. Hue coef-
ficient functions represent hue by means of the ratio between each chromatic
response and the total of chromatic responses at each wavelength. Saturation
coefficient functions represent saturation by means of the ratio between the
total of chromatic responses and the achromatic response at each wavelength.
HSB is polar coordinate model and reproduces with some accuracy many psy-
chophysical phenomena. HSB coordinates rg, by and wb can be obtained from
RGB model by means of the following equations:

rg=R—-G
by=282 -—R-G (3.19)
wb= R+ G+ B.

Finally, the intensity axis wb can be sampled more roughly than rg and by
without a human observer noticing any perceptible differences.

3.5 Image Formats

Storage and retrieval of images is performed by means of files. They are orga-
nized on the basis of particular standards called image file format standards.
Storing an image requires a lot of memory. For instance, a grayscale image of
1024times1024 requires 1024x1024 bytes i.e. 1 MByte. Therefore each image
is stored in compressed form. Image file formats can be divided into two fam-
ilies: nolossy image file formats and lossy image file formats. In the nolossy
image file formats the compression stage does not imply an information loss.
Hence after the decompression we obtain the original file before the com-
pression. Vice versa, in the lossy formats the compression stage implies an
information loss.

3.5.1 Image File Format Standards

In this subsection we will provide a concise description of the most popular
image file formats with the exception of JPEG. This standard will be presented
in Section 3.5.2.
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Tagged Image File Format (TIFF)

This format, whose file extension is .tif or .tiff, can be used to efficiently
manage very different types of images such as, for instance, bitmaps and
compressed color images. TIFF is generally a nolossy compression format®.

Portable Network Graphics (PNG)

PNG, whose file extension is .png, is a format that provides lossless storage
of raster images. PNG offers the main TIFF functionalities.

Graphics Interchange Format (GIF)

GIF supports 8-bit color images and is generally used in application programs
(e.g. word processors) in the Windows environment.

Postscript

This format, developed in the UNIX environment, is used for printing. In this
format gray-level images are represented by decimal or hexadecimal numerals
written in the ASCII format.

Portable Image File Formats

Portable image file formats are very popular image file formats which include
portable bitmap, portable graymap, portable pizmap and portable network map,
whose file extensions are, respectively, .pbm, .pgm, .ppm and .pnm. Portable
image file formats are convienent methods for the storage and retrieval of
the images since they supports all kinds of images of increasing complexity,
ranging from bitmaps to color images.

PPM and PGM File Formats

A PPM file is organized into two different parts, a header and the image data.
The header contains a PPM identifier (P3 and P6, respectively, for ASCIT and
binary formats), the width and the height of the image coded in ASCII and
the maximum value of the color components of the pixels. The PGM format
allows us to store only grayscale images. Its format is identical to PPM with
the unique difference in the identifier of the header (P2 and P, respectively,
for ASCII and binary formats).

5 TIFF also provides lossy compression schemes, although they are less popular.
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PBM

PBM format allows us to store binary images as a series of ASCII 0 (white
pixel) or 1 (black pixel). The PBM header is identical to the one of PPM
format with the only difference of the header. The header contains a PBM
identifier (P1), the width and the height of the image coded in ASCII .

3.5.2 JPEG Standard

JPEG, whose file extension is .jpg, is the acronym of Joint Photographic Ez-
perts Group. JPEG is the first international image compression standard for
continous-tone still images (e.g. photos). This standard is the result of joint
efforts by the International Telecommunication Union (ITU), International
Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC) and is referred as ISO/IEC IS 10918:1: Digital Compres-
sion and Coding of Continuous-tone Still Images. JPEG is very important
since the video standard MPEG is based on JPEG. For this reason, we pay
particular attention to this standard. JPEG generally performs a lossy com-
pression, i.e. the compression implies an information loss and the image after
the decompression stage is not identical to the original image. JPEG has
four modes (sequential lossless mode,® sequential DCT-based mode, progres-
sive DCT-based mode, hierarchical mode) and several options. For the sake of
space, we will describe only the JPEG basic coding algorithm (baseline JPEG
algorithm) which is based on Huffman coding for entropy encoding.

Huffman Coding

Huffman coding [12] is a popular and effective method of nolossy data com-
pression. It is a form of entropy coding. In order to present Huffman coding,
we consider the following example [6]. We have a data file formed by 50,000
characters of only five types, for instance F, F', G, H, I. Besides, we suppose
that the frequence of the characters in the file is known (see Table 3.1). Our
goal is to represent each character with a binary code (or code). If we use a
fized length code we need three bits for represent five characters, as shown
in Table 3.1. Hence the overall amount of bits required for coding the file is

Table 3.1. Frequency of each character in the file.

EFE F G H 1

Frequency  40% 5% 25% 10% 20%
Fix Length Code 000 001 010 011 100
Huffman Code 0 1100 10 1101 111

6 In this mode, JPEG produces a nolossy compression.



3.5 Image Formats 69

Fig. 3.7. Huffman tree representation for the example of Table 3.1.

150,000 bits. Can a code be designed that requires less bits? The answer to
this question is provided by Huffman coding [12]. David Huffman proposed
his code, when he was a MIT graduate student, as a exam project for the
information theory course. Huffman’s basic idea was to represent each charac-
ter by means of a binary string of variable size (variable length code). In this
way a shorter bit code was associated with the character whose frequence was
higher. Huffman coding for the five characters, shown in Table 3.1, requires
an overall amount of bits By equal to:

By = 50,000 % (0.40 x 1 4+ 0.05 * 4 + 0.25 * 2 + 0.10 % 4 + 0.20 % 3) = 105, 000.

Huffman coding, compared with fix length code, lets us save 45,000 bits,
i.e. 30% of the overall required storage space. It is possible to show [6] that
Huffman coding is optimal. The key to Huffman coding is Huffman’s algorithm
which makes an extended binary tree of minimum weighted path length from a
list of weights. We now describe the algorithm. Firstly, we assume that with
each symbol (or character) is associated a weight equal to the number of the
symbol occurrences in the file. For instance, in our example, with the symbols
FE and I are associated, respectively, 40 and 20. Huffman’s algorithm uses a
bottom-up strategy and assumes that we are making a unique tree starting
from a group of trees (forest). In the first stage, each tree is composed of
a single node with the associated symbol and weight. Trees are gathered by
choosing two trees and creating a new tree from the fusion of the two original
trees. Hence the forest cardinality decreases by one unity at each algorithm
stage. When the forest is composed by a unique tree, Huffman’s algorithm
stops. Huffman’s algorithm is composed of the following steps:

1. Start with a forest of trees. Each tree is composed of a unique node, with
an associated character and weight. The weight is equal to the occurrences
of the character.

2. Pick two trees (T} and T») with the smallest weights of roots. Create a
new tree (7},), whose left and right subtrees are respectively 77 and T,
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which has a root whose weight w(7},) is equal to:

where w(T1) and w(T5) are, respectively, the weights of 77 and T5.
3. If the forest cardinality is more than one go to step 2; otherwise return
the single tree left.

It is possible to show that the single tree returned by Huffman’s algorithm is
an optimal encoding tree [6]. The labeling of the edges of the optimal encoding
tree is arbitrary. A popular strategy consists in assegning a value of 0 to an
edge of any left child and a value of 1 to an edge of any right child (or vice
versa). By concatenating the labels of the edges we obtain the Huffman coding.
The labeled optimal encoding tree, produced by Huffman’s algorithm, in the
example of five characters is shown in Figure 3.7. Finally, we conclude with
the remark that Huffman’s algorithm is an example of greedy algorithm [6].
It is greedy since the nodes with the smallest weights are picked at each step
and this local optimal decision results in a global optimal encoding tree.

Baseline JPEG Algorithm

After the description of Huffman’s coding we return to JPEG and describe its
baseline algorithm. The baseline JPEG algorithm is formed by the following
steps:

1. Color space transformation: Firstly, the image is converted from RGB
space into a Y C}, C,. space, similar to YIQ and YUV color spaces used in
NTSC and PAL systems. As we have seen previously, Y is the luminance
component whereas Cp, and C,. components together represents the image
chrominance. A matrix for each single component is built. Each matrix is
formed by elements whose range is from 0 to 255.

2. Downsampling: The chrominance components are downsized. Each Cj, and
C, matrices are reduced by a factor of two in horizontal and vertical direc-
tions.” This is performed by averaging on squares formed by four pixels.
For instance, if each matrix, before downsampling, had 640x480 pixels,
after downsampling Y matrix has 640x480 pixels, whereas C; and C.
matrices have 320x240 pixels. Downsampling is a lossy data compression
but it is not pratically noticed by the human eye since it is more sensible
to the luminance signal than the chrominance ones. The element values
are then centered around zero by substracting 128 from each one of them.
Finally each matrix is divided in blocks of 8 x8 pixels.

3. Discrete cosine transform: The 8x8 blocks of each component (Y, Cy,
C) are converted to the frequency space using a two-dimensional discrete
cosine transform (DCT) (see the Appendix). DCT output is a 8x8 matrix

7 JPEG offers the possibility of reducing by a factor of 2 only in the horizontal
direction.
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Fig. 3.8. Quantization process in JPEG. (a) DCT matrix before the quantization;
(b) quantization matrix; (¢) DCT matrix after the quantization

of DCT coefficients. Theoretically, DCT is nolossy, but practically there
is a small information loss due the approximation errors.

4. Quantization: The human eye can detect a small difference in brightness,
but is not able to discriminate the exact magnitude of a high-frequency
brightness variation. This physiological fact is used in JPEG to reduce the
amount of information in the high frequencies. This is performed in the
Quantization step, where less important DCT coefficients, generally the
ones related to high frequencies, are deleted. This lossy transformation
is performed by dividing each DCT coefficient by a weight taken from
a table (quantization table). If all weights are 1, the transformation pro-
duces no effects, but if the weights increase quickly from the origin, the
coeflicients related to high frequency are downsized notably. An example
of the quantization process is shown in Figure 3.8.

5. Average value reduction: In this step the value (0,0) (average value) of
each block, which is given by the value at the top left corner, is reduced,
by replacing it with the difference between actual average value and the
average value of the previous block. This difference is generally small since
the average values of the block does not differ each other notably. Hence
replacing each average value with its difference with the average value of
the previous block implies that most average values, after average value
reduction, are very small. During average value reduction, the other DCT
coefficients do not change.

6. Linearization: In this step the linearization of the block is performed . The
block is linearized using a particular zig-zag scheme, shown in Figure 3.9.
The zig-zag scheme produces a density of zero at the end of the block. In
Figure 3.9 the zig-zag scheme produces a final sequence of zeros which is
effectively coded using a unique value, i.e. the zero amount. At the end
of the linearization process, the image is represented by a unique list of
numbers.

7. Huffman coding: Finally, the list of number is coded by Huffman coding.

JPEG is very popular since its compression rate is generally not less than
20:1. The decoding of a JPEG image requires performing the above-described
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145 26 22 1 9

Fig. 3.9. Linearization of the block. The order is from left to right.

algorithm backwards. The encode and the decode of a JPEG image generally
require the same computational resources.

3.6 Video Principles

A property of the human eye is to hold for a few milliseconds the projected
image of any object before it dissolves. If a sequence of image is projected
at more than 25 images per second, human eyes cannot realize that they are
looking at a sequence of discrete images. Video and movies use this principle
to produce the sensation of moving images. To understand video, the best ap-
proach [26] is to consider the model of black-and-white television. To represent
the bidimensional image, the camera makes a scanning, by means of a beam
of electrons, fast from left to right and more slowly from up to down recording
the light intensity on the screen. When the scanning is complete (frame), the
electron beam restarts. The intensity, in function of time, is the transmitted
signal and receivers repeat the scanning to reproduce the image. Although
modern CCD videocameras make an integration instead of a scanning, some
videocameras and CRT® monitors make a scanning. Hence, our description
has still a certain degree of validity. The parameters of the scanning depends
on the considered television standard. NTSC (National Television Standard
Committee), the television standard in USA, has 525 scanning lines, the ra-
tio between the horizontal and the vertical dimension is % and makes 30
frames per second, whereas, the European standards PAL (Phase Alternative
Line) and SECAM (SEquentiel Couleur Avec Memoire)? have 625 scanning

8 CRT stands for cathode-ray tube.
9 Sequential Color with Memory.
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lines, the same ratio of % between the horizontal and the vertical dimension
and make 25 frames per second. The color television uses the same scanning
model of the black-and-white television. In this case three synchronized elec-
tron beams are used, one beam for each of three primary colors (Red, Green
and Blue). Then, in the three television systems (i.e. NTSC, PAL and SE-
CAM) RGB signals are transformed into a luminance signal and into two
chrominance signals. Each system uses different transformations to obtain
chrominance signals. Since the human eye is more attuned to the luminance,
the luminance has to be transmitted more accurately than the chrominance
signals.

We have briefly described the analog television. We describe now digital
video. Digital video is a sequence of frames, each of them is a digital image,
whose basic element, as we have seen, is the pixel. In digital video color, each
primary color (i.e. red, green and blue) is represented by eight bits. Hence
more than sixteen millions of colors can be represented in the digital color
videos. As we have seen at the beginning of this chapter, human eyes can
distinguish only a smaller number of colors, i.e. ~17,000 colors.

In order to produce a uniform movement, digital video has to display at
least 25 frames per second. In digital video, the rate between the horizontal
and the vertical dimension is %, whereas the digital screen usually has 640x480
(or 800x600) pixels.

High-definition television standards have different parameters, the digital
screen has 1280x 720 pixels and the rate between the horizontal and the ver-
tical dimension is %6. For sake of precision, we have to underline that the
European standard digital video broadcasting (DVB) also permit % as rate
between the horizontal and the vertical dimension.

In the next section we will describe the main standard for video compres-
sion, i.e. MPEG.

3.7 MPEG Standard

Video requires a huge quantity of memory for the storage. For instance, a TV
movie without compression, displayed on a screen of 640x480 pixels with a
length of two hours, requires about 200 GBytes. Hence, compression is a cru-
cial topic for digital video. In this section, we briefly describe the MPEG stan-
dard, paying particular attention to MPEG-2. The MPEG (Motion Picture
Ezperts Group) [19]. MPEG-1 (International Standard 11172) was designed
for a videorecorder at 1.2 Mbps. MPEG-2 (International Standard 13118)
was designed to compress video signals from 4 to 6 Mbps in order to be
used in NTSC and PAL television systems. Both MPEG-1 and MPEG-2 use
spatial and temporal redundances in the video. A spatial redundance can be
exploited coding separately each frame by means of JPEG. A further compres-
sion can be obtained observing that consecutive frames are often almost the
same (temporal redundance). The digital video system (DV'), used in digital
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videocameras, codes each frame separately by means of JPEG. Since coding
has to be perfomed in real time, coding each frame separately is faster. In the
scenes where the videocamera and the landscape are fixed and only one or
two objects move slowly, almost all pixels will be the same in two consecutive
framess. Therefore, a good compression result can be obtained subtracting
each frame from the preceeding frame and performing JPEG compression on
the difference. This is the strategy adopted by MPEG. Nevertheless, when
the videocamera performs a zoom, this strategy fails. Therefore a method of
motion compensation is required. This is the strategy adopted by MPEG and
is the main difference between JPEG and MPEG. MPEG-2 produces three
different frame types, which have to be elaborated by the display program.
The frames are:

I-frame (or intra-frame): still images coded by means of JPEG.
P-frame (or predictive frame): the difference between the actual frame and
its predecessor.

e B-frame (or bidirectional frame): differences between the actual frame and
its predecessor and its successor.

I-frames are still images coded by means of JPEG. This implies that the
luminance is used at full resolution, whereas the chrominance components
are used at half resolution along both horizontal and vertical axes. I-frames
have to be produced periodically for some reasons. Firstlyy, MPEG can be
used for the television transmission which is characterized by the fact that
the customers connect themselves with the television transmission when they
want. If all the frames depend on the preceeding one, anyone who has missed
the first frame could never decode the succeeding frames. Besides, if a frame
was received wrongly, it could not decode the succeeding frames.

P-frames code the differences between two consecutive frames. They are
based on the idea of macroblocks, which cover 16x16 pixels in luminance and
88 pixels in the chrominance components. A macroblock is coded looking for
in the preceeding frame the same macroblock or a macroblock which differs
only a little from it. An example of P frame is shown in Figure 3.10. The
B-frames are similar to P-frames, with the difference that they code both the
differences of the actual frame with the preceeding and the succeding frame.
To code a B-frame, the decoder requires to mantain, at the same time, in the
memory three frames: the preceeding one, the actual one and the succeed-
ing one. In order to make simpler the coding, the frames are ordered in a
MPEG-flux on the basis of their dependence and not on the basis of the order
according to which they are displayed. In the next section we will describe
other MPEG standards.
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Fig. 3.10. MPEG-2 standard. (a) and (b) are two consecutive I frames; (c) is the
P-frame, which is obtained subtracting (b) from (a).

3.7.1 Further MPEG Standards

After the success of MPEG-2, further standards of the MPEG family have
been developed. We briefly summarize below MPEG-4, MPEG-7 and MPEG-
21.

MPEG-4 Standard

MPEG-4 supports the composition of audiovisual information and representa-
tion of media in multimedia environments. MPEG-4 provides a toolbox that
has tools and algorithms for content-based interactivity, compression and ac-
cess. In particular, the toolbox contains content-based multimedia data access
tools, content-based manipulation and bitstream editing, natural and synthetic
data coding, improved temporal random access, improved coding efficiency and
coding of multiple concurrent data streams, robustness to errors and content-
based scalability [17]. MPEG-4 describes audiovisual data in the form of ob-
jects. MPEG-4 objects are entities that combine a data structure (object state)
with a set of methods (object behavior). A method is a computable procedure
associated with an object that works on data structures. MPEG-4 provides
a number of predefined classes organized in a hierarchical way. Classes are
object templates (e.g. images, audio clips). The hierarchy identifies the rela-
tionships among classes, in particular the inheritance. For instance a part of
a image inherits the properties of the whole image (e.g. gray-scale). The set
of classes above described is called MPEG-/ standard class library.

The architecture of MPEG-4 uses a terminal model for transmitting au-
diovisual data. A MPEG-4 terminal assumes a twofold form, i.e. it can be
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either a standalone application or part of a multimedia terminal. The former
terminal (encoder) encodes and transmits audiovisual data through a com-
munication nerwork. The latter terminal (decoder) decodes and displays the
audiovisual data. In the encoder terminal, audiovisual data are compressed,
error protected and then transmitted under the form of binary streams. In
the decoder terminal, the binary streams are corrected, whenever it is neces-
sary, and decompressed. Then a compositor presents and renders the objects
on the screen. The objects of a scene are memorized with the related infor-
mation about their relationships. This information is used by the compositor
to display the complete scene. MPEG-4 offers two different terminal kinds:
nonflexible and flexible. Nonflexible terminals are based on a set of algorithms
and profiles which are combined to offer a set of predefined classes which
can be chosen by the user by means of switches. Flexible terminals permit
the transmission of new classes defining, in this way, new templates for the
transmitted audiovisual data.

Now we describe MPEG-4 representation. The video verification model
of MPEG-4 provides a set of classes for the representation of the structure
and content of an audiovisual sequence [8]. A video sequence is modelled in
terms of a set video sessions. A video session is a collection of one or more
video objects. Each video object has one or more video object layers. Video
objects form an audiovisual scene and have properties (e.g. shape and texture).
Each video object layer provides the temporal or spatial resolution of a video
object. The layer is formed by an ordered sequence of snapshots (video object
planes)( VOPs). Each video object plane is a video object at a given time. The
VOP bounding box is divided into a number of macroblocks of 16x16 pixels
and are coded by means of JPEG. Binary or gray-scale shape information
can be associated with video objects. Binary shape information identifies the
pixels which belong to the video object. Binary shape information is expressed
by a matrix which has the same size of the VOP bounding box. In a similar
way, gray-scale shape information is also expressed by means of a matrix and
represented, with a value from 0 to 255, the transparency degree of the pixels.
gray-scale shape information is encoded by JPEG.

Motion estimation and compensation is made by splitting each VOP into
macroblocks of 16x16 pixels and by matching motion estimation. Each VOP
can be coded in three different ways, that is I-VOP (or intra VOP), P-VOP
(or predicted VOP) and B-VOP (or bidirectional VOP). I-VOPs are encoded
in a complete independent way; P-VOPs are predicted from the preceeding
VOP. B-VOPs are interpolated from the preceeding and succeeding VOPs.
The syntax of a compressed bitstream of an audiovisual object fulfills the
MPEG-4 System and Description Language. MPEG-4 permits either the use of
machine-independent bytecode or the use of scripts. The bytecode approch can
be used when the assumptions, on the templates to be described, are limited.
Scripts are less flexible but are a concise approach to represent templates.
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MPEG-7 Standard

MPEG-7 [25] has the aim of defining a standard set of descriptors of mul-
timedia information. In particular, MPEG-7 introduces the standardization
of structures (description scheme) for the descriptors and their relationships.
Descriptors and description schemes are associated with the multimedia con-
tent to permit effective searching. Description schemes can be hierarchical and
multidimensional and can include images, video, graphics, audio, speech and
textual annotations. MPEG-7 permits having different level of abstraction,
from the lowest to the highest. For instance, if data are visual (e.g. images,
videos), the lowest abstraction level can be a description of shape, texture,
color, motion. The highest level covers semantic information. The highest level
of description consists in the semantic information. Descriptions can vary on
the basis of the data types and of the application context. Finally, MPEG-7
can address applications which can be stored on-line or off-line or streamed
and can operate either in real-time or not critical time environments.

MPEG-21 Standard

In the MPEG family, MPEG-21 (also called MPEG-21 Multimedia Frame-
work) is the newest proposal and became a standard at the end of 2003. It
has the aim of enabling transparent and increased use of multimedia resources
across a wide range of networks and devices. MPEG defines a framework to
support transactions that are interoperable and highly automated, specifically
taking digital rights management (DRM) requirements and targeting multime-
dia access and delivery using heterogeneous network and terminals [4]. More
precisely, MPEG-21 aims to define a normative open framework for multi-
media delivery and consumption for use by all the actors (e.g. content cre-
ators, providers, users) in the delivery and consumption chain. For this reason,
MPEG-21 pays particular attention to intellectual property management and
protection (IPMP) topics.

3.8 Conclusions

This chapter has presented image and video acquisition, representation and
storage. Firstly, we have described human eye physiology paying attention to
human color perception. Then we have described the structure of digital image
acquisition devices. We have discussed the color representation in the digital
images presenting the main color models used in image processing. Regarding
storage, we have presented the main image formats describing JPEG in detail.
Finally, we have reviewed video principles and the MPEG standard.

We conclude the chapter providing some bibliographical remarks. A com-
prehensive survey of the color representation can be found in [30]. JPEG
standard is described in detail in [1]. The MPEG standards are fully discussed
in [17][19][25].
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Problems

3.1. Show that in the XYZ model the white is represented by the triple (1,1,1).

3.2. Consider the YIQ model. Show that in a grayscale image, where R=G=B,
the chrominance components I and ) are null.

3.3. Consider the HSV model. Show that in the simplest form of HSV trans-
formation, the hue (H) become undefined when the saturation S is null.

3.4. Compute in HSV model, the coordinates of cyan, magenta and yellow.
3.5. Repeat Problem 3.4 for the HSB model.

3.6. Take a videocassette registered under the NTSC system. How will it be
displayed by a PAL videocassette recorder (VCR)? Explain your answer.

3.7. Implement the Huffman coding algorithm. Test the software on the fol-
lowing example: consider a file formed by 10,000 A, 2,000 B, 25,000 C, 5,000
D, 40,000 F, 18,000 F. Compute how many bits are required to code the file.

3.8. Consider the file formed by 20,000 B, 2,500 C, 50,000 D, 4,000 E, 1,800
F. Compare, in terms of memory required, fix-length and Huffman coding.
Does there exist a case where fix-length and Huffman coding require the same
memory resources? Explain your answer.

3.9. How much memory is required to store the movie Casablanca in its un-
compressed version? Assume that the movie is black/white, has 25 frame/sec
(each frame is 640x480 pixels), its runtime is 102 minutes. For sake of sim-
plicity, do not consider the memory required to store the audio of the movie.

3.10. Repeat the Problem 3.9 for the movie Titanic. Titanic is a color movie,
has 30 frame/sec, and its runtime is 194 minutes.
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Machine Learning

What the reader should know after reading this chapter

e Supervised learning.
e Unsupervised learning.
e Reinforcement learning.

4.1 Introduction

The ability to learn is one of the distintive attributes of intelligent behav-
ior. Following a seminal work [5], we can say that “Learning process includes
the acquisition of new declarative knowledge, the development of motor and
cognitive skills through instruction or practice, the organization of new knowl-
edge into general, effective representations, and the discovery of new facts and
theories through observation and experimentation.”

The study and computer modeling of learning processes in their multiple
manifestations constitutes the topic of machine learning. Machine learning
has been developed around the following primary research lines:

o Task-oriented studies, i.e. the development of learning systems to improve
performance in a predetermined set of tasks.

o Cognitive simulation, namely, the investigation and computer simulation
of human learning processes.

e Theoretical analysis, i.e. the theoretical investigation of possible learning
methods and algorithms independently of applicative domain.

Machine learning methods, described in this book, are mainly the results of
the first and third research lines.

The aim of this section is to provide a taxonomy of machine learning
research, paying special attention to methods of learning by example.

The chapter is organized as follows: Section 4.2 provides a taxonomy of
machine learning; in Section 4.3 learning by examples is discussed; finally,
some conclusions are drawn in Section 4.4.
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4.2 Taxonomy of Machine Learning

This section presents a taxonomy of machine learning, presenting useful cri-
teria for classifying and comparing most machine learning investigations.
Although machine learning systems can be classified according to different
viewpoints [5], a common choice is to classify machine learning systems on
the basis of the underlying learning strategies used.

In machine learning two entities, the teacher and the learner, play a crucial
role. The teacher is the entity that has the required knowledge to perform a
given task. The learner is the entity that has to learn the knowledge to perform
the task.

We can distinguish learning strategies by the amount of inference the
learner performs on the information provided by the teacher. We consider the
two extreme cases, namely performing no inference and performing a remark-
able amount of inference. If a computer system (the learner) is programmed
directly, its knowledge increases but it performs no inference since all cognitive
efforts are developed by the programmer (the teacher). On the other hand,
if a system independently discovers new theories or invents new concepts, it
must perform a very substantial amount of inference; it is deriving organized
knowledge from experiments and observations. An intermediate case could be
a student determining how to solve a math problem by analogy to problem
solutions contained in a textbook. This process requires inference but much
less than discovering a new theorem in mathematics.

Increasing the amount of inference that the learner is capable of perform-
ing, the burden on the teacher decreases. The taxonomy of machine learning
below tries to capture the notion of trade-off in the amount of effort required of
the learner and of the teacher [5]. Hence we can identify four different learning
types: rote learning, learning from instruction, learning by analogy and learn-
ing from examples. The first three learning types are described below, while
the next section is devoted to the last type.

4.2.1 Rote Learning

Rote learning consists in the direct implanting of new knowledge in the learner.
No inference or other transformation of the knowledge is required on the part
of the learner. Variants of this method include:

e Learning by being programmed or modified by an external identity. It
requires no effort on the part of the learner. For instance, the usual style
of computer programming.

e Learning by memorization of given facts and data with no inferences drawn
from the incoming information. For instance, the primitive database sys-
tems.
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4.2.2 Learning from Instruction

Learning from instruction (or learning by being told) consists in acquiring
knowledge from a teacher or other organized source, such as a textbook, re-
quiring that the learner transform the knowledge from the input language
to an internal representation. The new information is integrated with prior
knowledge for effective use. The learner is required to perform some inference,
but a large fraction of the cognitive burden remains with the teacher, who
must present and organize knowledge in a way that incrementally increases
the learner’s actual knowledge. Learning from instruction mimics education
methods. Therefore, the machine learning task is to build a system that can
accept instruction and can store and apply this learned knowledge effectively.
Systems that use learning from instructions are described in [6][11][12].

4.2.3 Learning by Analogy

Learning by analogy consists in acquiring new facts or skills by transforming
and increasing existing knowledge that bears strong similarity to the desired
new concept or skill into a form effectively useful in the new situation. A
learning-by-analogy system might be applied to convert an existing computer
program into one that performs a closely related function for which it was not
originally designed. Learning by analogy requires more inference on the part
of the learner that does rote learning or learning from instruction. A fact or
skill analogous in relevant parameters must be retrieved from memory; then
the retrieved knowledge must be transformed, applied to the new situation,
and stored for future use. Systems that use learning by analogy are described
in [1][4].

4.3 Learning from Examples

Given a set of examples of a concept, the learner induces a general concept
description that describe the examples. The amount of inference performed by
the learner is much greater than in learning from instruction and in learning by
analogy. Learning from examples has become so popular in the last years that
it is often called simply learning. In a similar way, the learner and examples
are respectively referred as learning machine and data. In the rest of the book
these conventions will be adopted.

The learning problem can be described as finding a general rule that ex-
plains data given only a sample of limited size. The difficulty of this task is
similar to the problem of children learning to speak from the sounds emitted
by the adults.

The learning problem can be stated as follows: given an example set of lim-
ited size, find a concise data description. Learning techniques can be grouped
in three big families: supervised learning, reinforcement learning and unsuper-
vised learning.
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4.3.1 Supervised Learning

In supervised learning (or learning with a teacher), the data is a sample of
input-output patterns. In this case, a concise description of the data is the
function that can yield the output, given the input. This problem is called
supervised learning because the objects under considerations are already asso-
ciated with target values, e.g. classes and real values. Examples of this learning
task are the recognition of handwritten letters and digits, the prediction of
stock market indexes. Supervised algorithms are discussed in Chapters 8, 9
and 10.

In the problem of supervised learning, given a sample of input-output pairs,
called the training sample (or training set), the task is to find a deterministic
function that maps any input to an output that can predict future input-
output observations, minimizing the errors as much as possible. Whenever
asked for the target value of an object present in the training sample, it can
return the value that appeared the highest number of times together with this
object in the training sample. According to the type of the outputs, supervised
learning can be distinguished in classification and regression learning.

Classification Learning

If the output space has no structure except whether two elements of the
output are equal or not, this is called the problem of classification learning
(or simply classification). Each element of the output space is called a class.
The learning algorithm that solves the classification problem is called the
classifier. In classification problems the task is to assign new inputs to one
of a number of discrete classes or categories. This problem characterizes most
pattern recognition tasks. A typical classification problem is to assign to a
character bitmap the correct letter of the alphabet.

Regression

If the output space is formed by the values of continuous variables, for instance
the stock exchange index at some future time, then the learning task is known
as the problem of regression or function learning [7]. Typical examples of
regression are to predict the value of shares in the stock exchange market and
to estimate the value of a physical measure (e.g. pression, temperature) in a
section of a thermoelectric plant.

4.3.2 Reinforcement Learning

Reinforcement learning has its roots in control theory. It considers the sce-
nario of a dynamic environment that results in state-action-reward triples
as the data. The difference between reinforcement and supervised learning is
that in reinforcement learning no optimal action exists in a given state, but
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the learning algorithm must identify an action in order to maximize the ex-
pected reward over time. The concise description of data is the strategy that
maximizes the reward.

The problem of reinforcement learning is to learn what to do, i.e. how
to map situations to actions, in order to maximize a given reward. Unlike a
supervised learning task, the learning algorithm is not told which actions to
take in a given situation. Instead, the learner is assumed to gain information
about the actions taken by some reward not necessarily arriving immediately
after the action is taken. An example of such a problem is learning to play
chess. Each board configuration, namely the position of chess pieces on the
chess board, is a given state; the actions are the possible moves in a given con-
figuration. The reward for a given action (e.g. the move of a piece), is winning
the game. On the contrary, the punishment is losing the game. This reward, or
this punishment, is delayed, which is very typical for reinforcement learning.
Since a given state has no optimal action, one of the biggest challanges of
a reinforcement learning algorithm is to find a trade-off between exploration
and exploitation. In order to maximize reward (or minimize the punishment)
a learning algorithm must choose actions which have been tried out in the
past and found to be effective in producing reward, i.e. it must exploit its
current knowledge. On the other hand, to discover those actions the learning
algorithm has to choose actions not tried in the past and thus explore the
state space. There is no general solution to this dilemma, but that neither of
the two options can lead exclusively to an optimal strategy is clear.

A comprehensive survey on reinforcement learning can be found in [13].

4.3.3 Unsupervised Learning

If the data is only a sample of objects without associated target values, the
problem is known as unsupervised learning. In unsupervised learning there is
no teacher. Hence a concise description of the data can be a set of clusters or
a probability density stating how likely it is to observe a certain object in the
future. Typical examples of unsupervised learning tasks include the problem
of image and text segmentation and the task of novelty detection in process
control.

In unsupervised learning we are given a training sample of objects (e.g.
images) with the aim of extracting some structure from them. For instance,
identifying indoor or outdoor images or extracting face pixels in an image.
If some structure exists in training data, it can take advantage of the redun-
dancy and find a short description of data. A general way to represent data
is to specify a similarity between any pairs of objects. If two objects share
much structure, it should be possible to reproduce the data from the same
prototype. This idea underlies clustering algorithms that form a rich subclass
of unsupervised algorithms.

Clustering algorithms are based on the following idea. Given a fixed num-
ber of clusters, we aim to find a grouping of the objects such that similar
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objects belong to the same cluster. If it is possible to find a clustering such
that the similarities of the objects in one cluster are much greater than the
similarities among objects from different clusters, we have extracted structure
from the training sample so that the whole cluster can be represented by one
representative data point. Clustering algorithms are discussed in detail in the
Chapter 5.

In addition to clustering algorithms, in unsupervised learning techniques
there are algorithms whose aim is to represent high-dimensionality data in low-
dimension spaces, trying to preserve the original information of data. These
techniques, called dimensionality reduction methods (DRM) are particular
important for the following reasons. The use of more dimensions than strictly
necessary leads to several problems. The first one is the space needed to store
the data. As the amount of available information increases, the compression
for storage purposes becomes even more important. The speed of algorithms
using the data depends on the dimension of the vectors, so a reduction of the
dimension can result in reduced computation time. Then it can be hard to
make reliable classifiers when the dimensionality of input data is high (curse
of dimensionality [2]). Curse of dimensionality and dimensionality reduction
methods are described in Chapter 10.

4.4 Conclusions

In this chapter we have provided a taxonomy of machine learning research.
We have discussed in detail learning by examples, topic of this book, intro-
ducing supervised and unsupervised learning. Finally, we conclude the chapter
providing some bibliographical remarks, paying attention to the works who
discuss machine learning in general. Machine learning has been discussed in
detail for the first time in [8][9]. A modern approach to machine learning
is discussed in [10]. Recent books (e.g. [3]), including this one, are focused
essentially on learning by examples.
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Bayesian Theory of Decision

What the reader should know to understand this chapter

e Basic notions of statistics and probability theory (see Appendix A).
e (Calculus notions are an advantage.

What the reader should know after reading this chapter

e Basic notions of Bayesian theory (e.g., likelihood, priors, evidence).
Fundamental concepts of the Bayesian theory of decision (e.g., loss func-
tion, Bayes decision rule).

Discriminant functions.

Normal distribution function.

Whitening transformation.

Receiver operating characteristic (ROC) curves.

5.1 Introduction

Bayesian theory of decision (BTD) is a fundamental tool of analysis in Ma-
chine Learning. Several machine learning algorithms have been derived using
BTD. The fundamental idea in BTD is that the decision problem can be
solved using probabilistic considerations. In order to introduce the theory we
consider the following example. We suppose to have a classroom in which
there are students of both genders. Moreover, there is an examiner, outside
the classroom, that has to call the students for the examination. He has a list
of the surnames of the students, but the surnames are not accompanied by the
first names. How can the examiner decide if to a given surname corresponds
a girl or a boy?

The aim of this chapter is to answer this question by introducing BTD.
We will show that BTD is a formalization of the common sense [7]. There are
many works on BTD [2][3][5][8][16][15], this chapter is inspired by the work
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of [7], that represents a milestone in the history of pattern recognition and
machine learning.

The chapter is organized as follows: Sections 5.2 and 5.3 present Bayes de-
cision rule and Function respectively. Section 5.4 introduces the loss function;
the special case of zero-one loss function is discussed in Section 5.5. Sec-
tion 5.6 reviews discriminant functions; Section 5.7 introduces normal density
and Whitening transform. In Section 5.8 we discuss the discriminant function
when the likelihood assumes a normal distribution. Section 5.9 introduces Re-
ceiver Operating Curves. In Section 5.10 some conclusions are drawn; finally
some problems are proposed at the end of the chapter.

5.2 Bayes Decision Rule

In this section we formalize what we have shown in the Introduction. We con-
sider again our classroom with boys and girls and the examiner that has only
a list with the surnames of the students. When the examiner calls a student
(e.g. Smith) and the student appears, in decision-theoretic terminology we say
that the student replies the nature in one of two possible states, i.e either the
student is a boy or the student is a girl. We identify the state of nature (or
class) with C. If the student is a girl C = C;, otherwise C = Cs. Since the state
of nature is unknown a natural choice is to describe C in a probabilistic way.

We assume that there is prior probability p(C1) that the student called by
the examiner is a girl and p(Cs) that is a boy. The sum of the prior probability
over all possible classes, i.e. C; and Cy in our example, must be one. If our
examiner has to decide if the student Smith is a girl or a boy, in absence of
further information he is forced to base his decision on prior probabilities.
Hence he has to apply the following decision rule.

Definition 1 (Prior Probability Decision Rule) Decide C; if p(C1) >
p(Ca); decide Co otherwise.

If the amount of boys and girls is roughly the same, the previous decision rule
will behave as the coin toss, i.e. it will be right only in half of the cases.

We suppose that the examiner for each student knows n numeric measure-
ments (or features) x = (x1,...,x,), where, for instance, 7 is the height, o
is the weight and so on. For sake of simplicity we suppose that the features
are two and that are height and weight. For instance, if the height and the
weight of the student Smith are, respectively, 1.60m and 59K g, Smith can
be represented by the feature vector (1.60,59). Generalizing we say that each
student can be represented by a feature vector (or a pattern) x. Since differ-
ent features, as shown by the distribution of students’ height in Figure 5.1,
are associated to different students we can model the feature vector x as a
random variable whose distribution p(x|C) depends on the state of nature C.
The distribution p(x|C) is the class-conditional probability density function,
i.e. the probability density function for x when the state of the nature is C.
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Fig. 5.1. Hypothetical distribution of students’ height in the classroom.

The set of pairs (X,C) = {(x1,C1), (x2,C2), ...(x¢,Cr) }, where the generic
(xi,C;) means that C; is the state of nature of x;, is called simply data (or
a data set). In the rest of the chapter we assume that data are i.i.d that
stands for independent and identically distribuited random variables. Saying
that data are i.i.d. means that they are drawn independently according to the
probability density p(x|C).

BTD assumes that all the relevant probability values are known, namely
we assume that the prior probabilities p(Cy), p(Cz2) and the class-conditional
probability densities p(x|Cy), p(x|C2) are known. The joint probability density
of finding a pattern x in the class p(C;) is:

p(Cj,x) = p(Cj[x)p(x). (5.1)
But the same joint probability can also be written:
p(Cj,x) = p(x|C;)p(C;). (5.2)
Plugging Equation (5.2) in (5.1) we get:
p(Cj[x)p(x) = p(x|C;)p(C;). (5.3)

Dividing by p(x), we finally get:

p(xIC;)p(C5)

p(el) = P



94 5 Bayesian Theory of Decision

We have proved the Bayes Theorem [1]. Equation (5.4) is called the Bayes
formula.

The terms p(C;) and p(C;|x) are called respectively prior probability and
a posteriori probability. The prior probability (or simply prior) expresses the
a priori knowledge that we have on the problem, for instance the overall
percentage of girls in the classroom. The a posteriori probability (or simply
posterior) expresses the probability that the state of nature is C; when the
pattern x has been observed. The term p(x) is called evidence and in the case
of two classes is:

p(x) = ZP(X|Cj)p(Cj)- (5.5)

Evidence can be viewed as a normalization factor ensuring that the sum of the
probabilities is one. Therefore evidence can be neglected and we can conclude
that posterior probability is determined by the product p(x|C;)p(C;). When
p(x|C;) is large it is likely that the sample x belongs to the class C;. Therefore
the term p(x|C;) is called the likelihood of C; with respect to x.

We consider a pattern x for which p(Ci|x) is larger than p(Cq|x), it is
natural to decide that the pattern x belongs to the class C;; otherwise we
assign the pattern to the class Cy. It is quite easy to show that our strategy is
theoretically correct. We observe that for a pattern x the probability of error
p(error|x) is p(C1|x) if we assign x to Cq (i.e. x € C3), vice versa is p(Cz|x)
if we assign the pattern to C; (i.e. x € C1). We can minimize p(error|x) by
deciding C; if p(C1|x) > p(Cz|x) and Cy vice versa. Now we can compute the
average probability of error p(error):

p(error) = /jo p(error,x) = /jo p(error|x)p(x)d(x). (5.6)

If we guarantee, deciding C; if p(C1]x) > p(Cq|x) and Cy otherwise, that
p(error|x) is as small as possible, then p(error) has to be as small as possible.
Hence the following Bayes decision rule

Decide Cy if p(Ci]x) > p(Ce|x); otherwise decide Co (5.7)

is justified.
The probability error P(error|x) associated to Bayes decision rule is:

P(error|x) = min(p(C1]x), p(C2|x)). (5.8)
Plugging equation (5.4) in (5.7) we get
x|CUp(C1)  p(x|C2)p(C2)
p(x) p(x)

Since the evidence p(x) is a normalization factor it can be neglected. Therefore
we obtain

Decide C1 if p(x|C1)p(C1) > p(x|C2)p(Ca); otherwise decide Ca. (5.9)

Decide Cy if r( ; otherwise decide Cs.
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5.3 Bayes Classifier*

In this subsection we show formally that the Bayes decision rule is optimal.
Following [6] we call an observation (or a feature vector or a pattern) a n-
dimensional vector x while its state of nature (or class) C, takes value in a
finite set [1, ..., M]. This means that each pattern can have m different states
of nature. The aim of machine learning is to build a mapping (or a classifier)
a : R™ — [1, M] which represents the guess of C given x. The classifier makes
an error if a(x) # C.

Let (X,)) be a R™ x {1,..., M }-valued random pair. The distribution
of (X,)) describes the frequency of encountering particular pairs. An error
occurs if a(X) # Y and the probability of error for a is

L(a) = P(a(X) £ V).
The best classifier a* is defined by

a* = arg main Pla(X)#Y) (5.10)

The mapping o* depends upon the distribution of (X,)). Therefore, if the
distribution is known a* may be computed. The problem of finding a* is called
the Bayes problem. The classifier a* is called the Bayes classifier. The minimal
probability of error is called Bayes error and is denoted by L* = L(a*).

Now we pass to prove that Bayes classifier is optimal with respect to the
error minimization. For the sake of simplicity, we suppose that the ) assumes
value in {0,1} that corresponds to say that there are only two classes, the
class ‘0’ (i.e. Y = 0) and the class ‘1’ (i.e. Y = 1). Given a n-dimensional
vector x, we define n(x) the conditional probability that ) is 1 given X = x
such as:

n(x) = P(Y = 1]X = x)

Any function a : R" — {0,1} defines a classifier (or a decision function).
Now, we define the Bayes classifier

a*(x){lifn(x)>§}'

0 otherwise.

The following theorem shows that the Bayes classifier is optimal.

Theorem 1 (Bayes Classifier Optimality) For any classifier o : R" —

{01},
P(a*(X) #Y) < P(a(X) # ).

that is, the Bayes classifier o* is the optimal classifier.

Proof
Let X = x, the conditional error probability P(a(X # Y|X = x) of any « is
expressed by:
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=1-Pla(X =YX =x)

—1-PY=1aX)=1X=x) - P(Y =0,a(X) =0/X = x)
— 1 Tyt PV = 11X = %) + Lo P(Y = 01X = x)]

=1 - [Lye=11(x) + Lo =0(1 — 1(x))]

(5.11)
where I' is the indicator function.
Thus P(a(X) # Y|X =x) — P(a*(X) # Y|X = x) is given by:
= n(X)[Ia*(x)zl - Ia(x):l] + (1 - W(X))[Ia*(x):o - Ioz(x):O}
= n(x)[Ia*(x)zl - Ia(x):l] + (]- - n(x))[la(x)zl - Ia*(x):l]
= (277(X) - 1)[10*(x)=1 - Ia(x):l] (512)

0

v

If n(x) > 5 the first (by definition) and the second term? of (5.12) are nonneg-

ative and their product is still nonnegative. On the other hand, if n(x) < 3
the first and the second term® are nonpositive and their product is again

nonnegative. Hence the theorem statement is proved.

5.4 Loss Function

In Section 5.2 we gave the expression of the probability error, in the case of
two classes, associated with the Bayes decision rule. Now we generalize the
approach considering more than two classes and defining the loss function.
Intuitively, we can view the loss function as a tool to measure the performance
of a decision algorithm (or classifier). This approach permits taking actions
that are different from the usual classification, for instance the rejection. In
some applications it is mandatory to minimize the error as much as possible.
For instance, the maximum error that is acceptable for a postal OCR, that
is, the device that reads automatically the address of a letter, cannot exceed
1.5%. Therefore, deciding the rejection (e.g. the classifier refuses to make a
decision) when the the probability error is not acceptable is a correct policy.

The loss function measures the cost of each classifier action and converts
an error probability error into a decision. This approach allows us to han-
dle situations in which particular classification mistakes has to be considered
differently from the others. For instance, classifying in a patient a malignant
tumour as benign is heavier than classifying a benign tumor as malignant,
since in the first case the patient is not to undergo therapy against the can-
cer.

! Io)=1 is 1 if a(x) = 1; 0 otherwise.
% Since Iy»(x)=1 is 1, the term must be nonnegative
3 Since I +(x)=1 is 0, the term must be nonpositive
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Besides, we can decide that the cost of a misclassification of a pattern can
depend by the a priori probability of the membership class. Namely the cost
of misclassifying a pattern that belongs to a class ¢ can be considered heavier
if P(C;) is high. In some modern languages a few characters are very unusual
(e.g. in Italian the ¢ and in Greek the &) hence the cost of misclassification
of these character can be less heavy than the one associated to other charac-
ters, since the overall performance of an OCR is marginally affected by the
misclassification of these characters. Now we pass to the formal description of
the loss function.

Let (Cy,...,Car) be the finite set of the possible classes the patterns belong
to and let B = (04,...,0,) be the set of the possible action of the classifier.
The loss function 7(5;|C;) measures the penalty (or loss) that the classifier
receives when takes the action 3; and the pattern x belongs to the C;. Let
p(x|C;) be the state-conditional probability density function for x given that
C; is the class the pattern belongs to. Hence remembering Bayes formula the
posterior probability p(C;|x) is given by:

p(x|C;)p(C;)
p(Cjlx) = () (5.13)
where the evidence is:
M
p(x) = > p(x[C)p(C)). (5.14)

Now we consider a particular sample x and we assume to take an action ;.
If the class the pattern belongs to is C;, the loss associated with the action is
7(03;|C;). Hence the expected loss R([3;|x) associated with the action (; is:

M
R(Bilx) = Z (B:1C;)p(Cyx). (5.15)

In machine learning an expected loss is called risk and the term R(5;|x) is
called conditional risk.

When we observe a pattern x we can minimize the risk by choosing the
action that minimizes the conditional risk. Hence the problem of choosing the
action can be viewed as to find a decision rule that minimizes the overall risk.
Formally a decision rule is a function §(x) whose output is the action to take
for every pattern x. For every x the output of §(x) is an element of the set 5.

Given a decision rule 5(x), the overall risk R is:

R = / R(B(x)|x)p(x)dx. (5.16)

If we select 3(x) so that the conditional risk is as small as possible for every x,
the overall risk is minimized. This justifies the following alternative definition
of the Bayes decision rule:
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Definition 2 (Bayes Decision Rule) To minimize the overall risk, com-
pute the conditional risk

M
R(Bilx) =Y _ m(BilC;)p(Cs]x). (5.17)
j=1
fori=1,...,n and then choose the action (3; for which R(3;|x) is minimum.

The minimum R* resulting, with the application of Bayes decision rule, is
called Bayes risk.

5.4.1 Binary Classification

In this subsection we apply the previous considerations to the special case
of binary classification, e.g. a classification problem with only two classes. A
classifier that assigns a pattern to one of two classes is called a binary classifier
(or a dichotomizer). Whereas a classifier with more than two classes is called
a polychotomizer.

In the case of binary classification, action (8 stands for deciding that the
pattern x belongs to the class C;, whereas action 2 stands for deciding that
the pattern x belongs to the class Co. The conditional risk, given by (5.17), in
the binary classification is:

(Bilx) = m(B1|C1)p(Cy
(B2]x) = 7(B2|C1)p(Cy

Hence Bayes decision rule in this case is

R |x) + 7(51]C2)p(Ca|x) (5.18)
R %) + 7(B2|C2)p(C2x). (5.19)

Definition 3 (Bayes Decision Rule; Binary Classification)
Decide Cy if R(61]x) < R(B1]x); Decide Co otherwise.

The same rule can be reformulated in terms of posterior probabilities

Definition 4 Decide Cy if
(m(B=2]C1) — m(B1]C1)) p(Cilx) > (m(B1]C2) — m(B2]C2))p(Calx); (5.20)

Decide Co otherwise.

The factors (m(82|C1) — 7(£1|C1)) and (7(B1]|C2) — w(62|C2)) are positive since
the loss associated to an error is larger than the loss associated to a correct
classification. Therefore the decision of the classifier is determined by what
probability between p(Cy|x) and p(Cy|x) is larger.

If we apply the Bayes theorem at (5.20) we get

(m(B2Cr) = w(B1]C1)) p(x[C)p(x) > (7(B1|Ca) =7 (B2]C2) )p(x[C2)p(x). (5.:21)

Assuming that (w(62|C1) — 7(B1]|C1)) is positive, that is correct since the loss
associated to an error is larger the one associated to a correct classification,
we can rearraging the terms of (5.21) obtaining the following expression:
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p(x[C1) _ (m(B1|C2) — m(B2]C2)) p(C1)
p(x|C2) (m(B2|C1) = (B1]C1)) p(C2)

Hence an alternative expression of Bayes rule is:

Definition 5 Decide C; if the inequality (5.22) holds; Decide Coy otherwise.

(5.22)

The term 2 (nglg is called the likelihood ratio. Hence if the likelihood ratio
exceeds a threshold, that does not depend by the pattern, the decision is Cy,

otherwise Cs.

5.5 Zero-One Loss Function

In classification each pattern x is associated to a class, and the action 3; of
the classifier generally consists in deciding that the pattern belongs to a class
C;. If the action §; is taken and the pattern belongs, in nature, to the pattern
C;; the decision is correct if ¢ = j, otherwise is an error. In order to find a
decision rule that minimizes the error rate, the first step consists in looking
for the loss function that is appropriate for the situation described above. The
loss function is the so-called symmetrical or zero-one loss function

w(6i|cj):{?§;§_ i,j:l,...,M}.

This function assigns no penalty to a correct decision, vice versa any error
has penalty one. In this way, all errors are evaluated in the same manner.

If we apply the zero-one loss function to the conditional risk, that is given
by Equation (5.15), we get:

S

R(Bi|x) = Z (BilC;)p(C;x)

=1—p(Cix) (5.23)

where 1 — p(C;|x) is the conditional probability that the action (;, namely to
assign the pattern x, is correct.

The Bayes decision rule consists in choosing the action that minimizes
the conditional risk. Since the conditional risk is given by Equation (5.23),
minimizing the conditional risk corresponds to maximizing the a posteriori
probability p(C;|x). Hence the first formulation of Bayes decision rule, given
n (5.9), is justified.
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5.6 Discriminant Functions

The use of discriminant functions is a popular approach to make a classifier.

Definition 6 (Discriminant Functions) Given a pattern x € R™, and the
finite set of the possible classes C*=(Cy,...,Cpr), we call G=(y1(x), ..., vm(x))
with v; : R™ — R, a set of discriminant functions. The single function -y,
(i=1,...,M) is called a discriminant function.

Using the set G we can get the following discriminant function rule

Definition 7 (Discriminant Function Rule) Assign the pattern x to the
class C; if
~i(x) > 7v;(x) Vi # 1. (5.24)

If we want to make classifier, it is adequate to make a machine (e.g. a computer
program or an hardware device) that computes the set of discriminant func-
tions G and chooses the class that corresponds to the function that assumes
the highest value for the pattern x.

Now we show that it is easy to represent a Bayes classifier in the framework
of the discriminant functions. If for each conditional risk R(3;|x) we define a
discriminant function ~;(x) = —R(8;|x), choosing the maximum discriminant
function implies the minimization of the corresponding conditional risk. Hence
the discriminant function rule is an alternative way to the Bayes decision rule.

The set of discriminant functions is not uniquely determined. For instance,
if we add each function with the same real costant we get a new set of dis-
criminant functions which produces the same classifications produced by the
former set. The same effect we obtain if we multiply each discriminant func-
tion by a positive constant. If we replace each discriminant function 7; with
a function ¢(;) where ¢(-) is a continuous monotonic increasing function, we
obtain the same classifier.

Now we pass to compute the form of the set of discriminant functions when
we use the zero-one loss function. In this case each discriminant function is
given by:

7i(x) = —R(Bi]x)
=p(Cilx) — 1
= p(C;]x). (5.25)

The last equality holds since we can ignore the substraction of real con-
stants. Applying the Bayes theorem (5.25) we get

7i(x) = p(Cilx)
p(x
If we take the logarithm in both sides of Equation (5.26) and we define
7i(x) = In7;(x), we get
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Yi(x) = Inp(x|C;) + Inp(C;) — Inp(x) (5.27)

Since the evidence p(x) is a scalar, the term Inp(x) can be neglected. Hence
we obtain the final formula:

7i(x) = Inp(x|C;) + Inp(Cy). (5.28)

The use of a set of discriminant functions induces a partition of R™, which is
divided into M deciston regions, D1, ..., Dyys.

If ;(x) > 7,(x) Vj # i then x € D;. The decision regions are separated
by decision boundaries that are hypersurfaces in R™.

5.6.1 Binary Classification Case

In this subsection we derive the set of discriminant function in the case of a
binary classification, namely when the classes are two. When the classes are
two we should use two discriminant functions 71 (x) and ~y2(x) and assigning
the pattern x to C; if v1(x) > 72(x). An alternative approach consists in
defining a unique discriminant function y(x) that is the difference between
two discriminant functions, namely

V(%) = 71(x) = 72(x). (5.29)
If we use y(x) the decision rule becomes:
Decide Cy if y(x) > 0; Decide Co otherwise.
If we plug Equation (5.25) in (5.29) we get the following expression:

7(x) = p(Ci[x) — p(C2|x) (5.30)

It is possible to obtain an alternative expression for the discriminant function
if we apply (5.28) to (5.29):

v(x) = lnp(x|C1) + Inp(C1) — Inp(x|C2) — Inp(Ca) (5.31)

_ nP(X|Cl) nP(Cl)
= xe) T e

. (5.32)

5.7 Gaussian Density

This section provides a brief description of the Gaussian probability density.
First of all, we recall a probability density function as a nonnegative func-
tion p : R — [0, 1] that fulfills the condition:

/ " @)z = 1. (5.33)

— 00
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Then we define the ezpected value of a scalar function f(x) for some probability
density function p(x):

@) = [ @ (534)
If x assumes values only on a discrete set S, the expected value is

E(f(2)) =Y f(x)p(x). (5.35)

zeS

5.7.1 Univariate Gaussian Density

The continuous univariate Gaussian density (or univariate normal density)
p(z) is a probability density function defined by (see Figure 5.2):

p(z) = \/% exp [—; ((I - m)j (5.36)

where p is the ezpected value (or mean) of z defined by

pw=2~E()= / ap(z)dz (5.37)
and where o2 is the variable
o =E(x—p)*= / (z — p)’p(z)de. (5.38)

The Gaussian density is fully characterized by the mean p and the variance
o2, therefore the Gaussian is often indicated with N (i, o).

The importance of the Gaussian density is underlined by the following fact.
The aggregate effect of the sum of a large number of independent random
variables, leads to a normal distribution. Since patterns can be considered
as ideal prototypes corrupted by a large number of random processes (e.g.
noise), the Gaussian is usually a very good model to represent the probability
distribution of the patterns.

5.7.2 Multivariate Gaussian Density

In this subsection the variable x is multivariate, namely x is a vector with n
components (x € R™). In this case the Gaussian density called multivariate
Gaussian density (or normal Gaussian density) p(x) is given by (see example
in Figure 5.3):

1 1 Ty
p(X)_meXp —5 (=) S (x - ) (5.39)
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Fig. 5.2. Gaussian curve for different value of o.

where x, pu € R, X is a nxn covariance matriz. |X| and 1 are, respectively,
the determinant of the covariance matrix and its inverse; (x — u)” denote the
transpose of (x — ).

The mean p and the covariance matrix X are given by:

p==E)= /xp(x)dx (5.40)

® = elx-px- " = [x-mx- e (541

The covariance matrix ¥ is always symmetric (le. ¥;; = 3j; Vi,j) and
positive semidefinite, that is all its eigenvalues \q,...,\, are nonnegative

N>0i=1,...,n).
If z; is the ¢-th component of x, ; is i-th component of p and X;; the
ij-th component of X, then

i = 5(331) (542)

Bij = E((wi — pa)(xj — 7)) (5.43)

The diagonal elements of the covariance matrix 3;; are the variances of x;,

ie 35 = E((xs — pi)(xi — ps)) . The other elements X;; (with ¢ # j) are

the covariances of x; and x;. If x; and x; are statistically independent, then

Eij =0.

The quantity d? = (x — pu)T 271 (x — p) is called the squared Mahalanobis

distance between x and p.
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Fig. 5.3. Gaussian in two dimensions.

5.7.3 Whitening Transformation

In this subsection we introduce the whitening transformation, a very popular
technique to preprocess the data. For instance, the whitening transformation
is a basic tool in the independent component analysis [4][12] computation (see
Chapter 11). Now we pass to introduce the whitening transformation.

Let 2 = (x1,...,%¢) be a data set, formed by vectors x; € R™, which
has mean (x) and covariance matrix 3. Then we introduce the eigenvalue
equation

XUu=U0A (5.44)

where U is a n X n matrix, consisting of N eigenvectors as U = [uq, ..., Uy]
and A is a diagonal matrix of eigenvalues as:

A O -e-
0 0
0 - A\,

Then we can define a new transformation of data that maps the data matrix
X into a new matrix Y, whose covariance matrix is the identity matrix I

Y =A"3UTX = (UA%)TX. (5.45)

The transformation UA~2 is called the whitening transformation or the
whitening process. The transformation U is the Principal Component Analysis
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Fig. 5.4. Schematic illustration of the whitening transform in a bidimensional space.
After PCA the data are distribuited in an ellipse with semiaxes v and v, which are
the eigenvectors of the covariance matrix. After the whitening transform the data
are in a circle of unitary radius.

(PCA) [13], that projects the data along the directions of maximal variance i.e
the principal components (see Chapter 11). The aim of the whitening trans-
formation is to change the scales of the principal components in proportion
to \/% The effect of the whitening transformation is shown in Figure 5.4.

The following theorem [10] underlines basic properties of the whitening
transformation:

Theorem 2 The whitening transformation
(i) is not orthonormal
(ii) does not preserve Euclidean distances

Proof
(i) The whitening transformation is not orthonormal since we have:

(UA )T (UA2)=A"20TUA 2 = A" £ L (5.46)
(i) Euclidean distances are not preserved, since we have:

IY[I2P=YTY = (A 20T X)T (A 3UTX) = XTUATWUTX # || X|2 (5.47)
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5.8 Discriminant Functions for Gaussian Likelihood

In this section we investigate the discriminant functions in the special case
that the likelihood p(x|C;) assumes a Gaussian distribution. In Section 5.6
we have seen that the discriminant functions v;(x) can be represented by the
following equation:

~i(x) = Inp(x|C;) + Inp(C;). (5.48)

If we suppose that the likelihood p(x|C;) has a normal distribution, i.e.
p(x|C;) ~ N (s, E) and we plug in (5.48), we get:

1 1
yi(x) = ,g In2r — S In[B] - 5 (x — ) "B (= ) + Ip(C). (549)
Now we discuss the form that (5.49) assumes in particular cases.

5.8.1 Features Are Statistically Independent

When the features are statistically independent, the non-diagonal elements of
the covariance matrix 3 are null. For sake of simplicity, we assume in addition
that each feature z; has the same variance 2. This assumption corresponds
to the situation in which all patterns fall in hyperspherical clusters of equal
size. Under this further condition, the covariance matrix X is a multiple of the
covariance matrix that is 3 = ¢2I. Therefore the inverse and the determinant
of the covariance matrix £ are, respectively:

1

-1 _
== (5.50)
=] = o (5.51)
Substituting them in (5.49) we get:
»(x)——ganﬂ'—nlna—LHx— I 4+ Inp(C;) (5.52)
,Yl - 2 20_2 l"’ p 1) .

Since the first two terms are additive constants, we can neglect them obtaining:

Ix — || 4+ Inp(Cy). (5.53)

1
¥i(x) = *@\

Prior Probabilities Are All Equal

If the prior probability C; is the same for each class, it becomes an additive
constant that can be neglected and becomes:

1 2
7i(x) = *ﬁ”x — il (5.54)

In this case the decision rule is the following
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Definition 8 (Minimum-Distance Rule) To classify a pattern x compute
the Fuclidean distance between x and each of the pu; mean vectors and assign
the pattern to the class whose mean is the closest.

A classifier that implements such rule is called minimum-distance classifier.
The mean vector (or centroid) p; is also viewed as a prototype for a pattern
belonging to the class C;.

Prior Probabilities Are Not All Equal

If the prior probabilities are not all the same, the decision is influenced in favor
of the class with the highest a priori probability. In particular, if a pattern x
has the same distance from two or more different mean vectors, the decision
rule chooses the class C; that has the highest a priori probability.

Now we consider again the (5.52), it can be rewritten in the following way:

1
Yi(x) = —Q[HXHQ —2p; x + || @il *] + Inp(C;). (5.55)

Since the term ||x|| is the same for all 4, it can be considered an additive
constant. Therefore it can be neglected and we can obtain the following linear
expression:

vi(x) = al x + b; (5.56)
where:
a = (5.57)
(. 0_2 IJ’l .
1
b; = —2—2Hui||2 + Inp(C;) (5.58)
o

b; is often called the threshold or bias for the i*" class. The expression (5.56)
is called linear discriminant function. A classifier based on linear discriminant
function is called a linear classifier.

In addition, it is possible to show (See Problem 5.11) that the decision
surfaces for a linear classifier are hyperplanes. Given two adjacent decision
regions D; and Dy, the hyperplane separating two regions is orthogonal to the
line that joins the respective means p; and ;.

5.8.2 Covariance Matrix Is The Same for All Classes

In this subsection we discuss another particular case that occurs when the
covariance matrix is the same for all the classes. This corresponds to the
situation in which the patterns fall in hyperellipsoidal clusters of equal size.
We consider again the Equation (5.49):

1 1
%i(x) = =F In2m — I8 = S(x— ) =7 x - ) + Inp(C)  (5.59)
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and we see that the first two terms are independent of i. Therefore they can be
considered additive constants and then neglected. Hence the previous equation
can be rewritten as :

() =~ (x — ) TS x— pu) + Inp(Cy) (5.60)

Prior Probabilities Are All Equal

If the prior probability C; is the same for each class, it becomes an additive
constant that can be neglected and becomes:

~i(x) = —%(X — )T (x - ). (5.61)

This is quite similar at the expression that we get when the features are
independent. The unique difference is that the Euclidean distance is replaced
with Mahalanobis distance. In similar way we can formulate an analogous
decision rule

Definition 9 (Minimum Mahalonobis Distance Rule) To classify a
pattern x compute the Mahalanobis distance between x and each of the u;
mean vectors and assign the pattern to the class whose mean is the closest.

A classifier that implements such rule is called minimum Mahalanobis distance
classifier.

Prior Probabilities Are Not All Equal

If the prior probabilities are not all the same, the decision is influenced in favor
of the class with the highest a priori probability. In particular, if a pattern x
has the same distance from two or more different mean vectors, the decision
rule choose the class C; that has the largest a priori probability.

Now we consider again (5.60) that can be rewritten in the following way:

1
vi(x) = —i[xTZflx —plE xS+ p 2T ] F Inp(C) (5.62)

The term x7 37 'x non depends by the index i and it can be considered an
additive constant that can be neglected. Hence the discriminant functions are:

vi(x) = al x + b, (5.63)

where:
a,=%X"'u (5.64)
bi = —lufz_lui +1np(Ci). (5.65)

2



5.9 Receiver Operating Curves 109

Also in this case the discriminant function are linear. The resulting decision
surface between two adjacent decision region D; and D; is is again an hy-
perplane, unlike the case of the features that are statistically independent,
are not generally orthogonal to the line that joins the means p; and p; (See
Problem 5.12).

5.8.3 Covariance Matrix Is Not the Same for All Classes

In this subsection we discuss the general case that is the covariance matrix is
not the same for all the classes. We consider again the Equation (5.49)

n 1 1
vi(x) = 3 In27 — §1n|2| — §(x — ) TSN (x — ) + Inp(C).

We notice that the unique term that is an additive costant is —% In 27. Drop-
ping it we obtain:

vi(x) =x'Six +alx +b (5.66)
where
S, = —%2;1 (5.67)
a =% " (5.68)
b= —guT S~ 3 In (S| + p(Co). (5.69)

The discriminant functions in this case are nonlinear. In particular, in the
binary classifiers the decision surfaces are hyperquadrics. The results obtained
for the binary classifiers can be extended to the case of more than two classes,
fixed that are two classes that share the decision surface.

5.9 Receiver Operating Curves

In this section we present a graphical method to represent the performances
of a classifier, the Receiver operating curves [7]. This representation has its
roots in the signal detection theory. We consider a device that has to detect
an atomic particle (e.g. an electron). The model of our device is simple: if the
particle is present the voltage v assumes a normal distribution N (vg, o), other-
wise the voltage assumes the same normal distribution with the same variance
but with different mean that AM'(vy, o). The device decides that the particle is
present when the voltage v exceeds a threshold value v*. Unfortunately the
users of the device do not know the value of the threshold value. Therefore
we need a measure, independent of the threshold value, that expresses the
effectiveness of the device to detect electrons. A measure that responds to
this criterion is the discriminability:
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o2 — ]
—l,

) (5.70)
The larger is the discriminability the better is the device.

In general we do not know wvy,vs,0, but we know the decisions of the
device and we can establish their correctness, for instance using other meth-
ods to establish the presence of the particle. We consider the following four
probabilities:

e p(v > v*|v € Cy) a positive that is the probability that the voltage is higher
than v* when the particle is present

e p(v>v*|v € () a false positive that is the probability that the voltage is
higher than v* when the particle is absent

o p(v < v*|v € Cq) a false negative that is the probability that the voltage
is smaller than v* when the particle is present

e p(v < v*|v € C1) a negative that is the probability that the voltage is
smaller than v* when the particle is absent

If we repeat our experiments many times, we can estimate these prob-
abilities experimentally. We can represent our system with a couple of real
numbers, namely the positive and the false positive rates. Hence the system
can be represented by a point in a two-dimensional space where on x-axis and
y-axis are respectively the positive and the false positive rates. If we keep fixed
the model only changing the threshold v*, the positive and the false positive
rates change. In this way the system describes a curve. This curve is called
the receiver operating characteristic (or ROC) curve. The advantage of the
signal detection approach consists in distinguishing between discriminability
and decision bias. The discriminability is a specific property of the detection
device; the decision bias depends by the receiver.

Each ROC curve is unique, that is, there is one and only one ROC curve
that passes through a pair of positive and false positive rates. We can gener-
alize the previous discussion and apply it to two classes having any arbitrary
multidimensional distributions. Suppose we have two distributions p(x|Cy)
and p(x|Cs) partially overlapped, therefore the Bayes classification error is
not null. Any pattern whose state of nature is Co could be correctly classi-
fied as Cy (a positive in the ROC terminology) or misclassified as C; (a false
positive). However, in the multidimensional case we could have many decision
surfaces that correspond to different positive rates, each associated with a
corresponding false positive rate. In this case a measure of discriminability
cannot be determined without knowing the decision rule that yields positive
and false positive rates. In addition, we could imagine that the positive and
the false positive rates that we have measured are optimal, that is, the decision
rule, actually used, is the one that yiels the minimum false positive rate. If
we build a multidimensional classifier we can represent its performances using
a ROC approach. Neglecting the optimality problem, we can simply vary a
single parameter in the decision rule and plot the false and negative positive
rates. The curve is called the operating characteristic. We conclude with the
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positive

false positive

Fig. 5.5. An example of an ROC curve.

remark that the operating characteristic curves are particularly interesting in
the applications in which the loss function changes during the time. In this
case, if the operating characteristic curve is function of a control parameter,
though the loss function changes, it can easily find the value of the control
parameter that minimizes the expected risk.

5.10 Conclusions

This chapter is a concise description of the foundations of the Bayesian the-
ory of decision. Firstly we have recalled the Bayes theorem and have defined
fundamental concepts as likelihood, priors and posterior probability. Then we
have defined the Bayes decision rule and have shown its optimality. We have
introduced fundamental machine learning concepts such as the loss function
and discriminant functions. We have discussed the particular case of Gaussian
likelihood deriving the discriminant functions in special case. Finally, we have
introduced receiver operating curves.

We conclude the chapter providing some bibliographical remarks. A com-
prehensive survey of the theory can be found in [7] that covers topics of BDT
(e.g. error bounds and Bayesian belief nets) not described by the chapter. Dis-
criminant functions are analyzed in detail in [10]. receiver operating curves
are fully discussed in [11]. Finally, a probabilistic approach to the machine
learning and decision problem can be found in [6].
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Problems

5.1. Given a normal distribution A/ (o, 11), show that the percentage of samples
that assume values in [—30, 30] exceeds 99%.

5.2. Consider the function f(z) = 17> where a € R. Find the value a such
that f(x) is a probability density. Besides, compute the expected value of x.

5.3. Consider the Geometric distribution[14] defined by:

p(x) =0(1-0)° (r=0,1,2,...,0<60<1).

Prove that its mean is E[z] = %.
5.4. Given a probability density f(x), the moment of fourth order [14] is
defined by

= iwe-

where 1 and o2 are, respectively, the mean and the variance.
Prove that the moment of fourth-order of a normal distribution N (u, o)
is 3.

5.5. Let « = (z1,...,2¢) and y = (y1,...,y¢) be two variables. Prove that if
they are statistically independent their covariance is null.

5.6. Suppose we have two classes C; and C with a priori probabilities p(Cy) =
% and p(C2) = 2. Suppose that their likelihoods are p(z|C1) = N(1,1) and
p(x|C2) = N(1,0). Find numerically the value of  such that the posterior
probabilities p(Cy|z), p(Ce|z) are equal.

5.7. Suppose we have two classes C; and C with a priori probabilities p(Cy) =
2 and p(Cz) = 2. Suppose that their likelihoods are p(z|C;) = N(1,0) and
p(z|Cy) = N(1,1). Compute the joint probability such that both points z; =

—0.1, z2 = 0.2 belong to C;.

5.8. Suppose we have two classes C; and C with a priori probabilities p(Cy) =
1 and p(Cz) = 2. Suppose that their likelihoods are p(z|C1) = N(2,0) and
p(z]|C2) = N(0.5,1). Compute the likelihood ratio and write the discriminant

function.

5.9. Suppose we have three classes C1, C2 and C3 with a priori probabilities
p(C1) = %, p(C2) = % and p(C2) = 3. Suppose that their likelihoods are
respectively p(z|C1) = N(0.25,0), p(z|Ce) = 7%= and p(|C3) = m.
Find the values a and b such that likelihoods are density functions and write
three discriminant functions.
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5.10. Implement the whitening transform. Test your implementation trans-
forming Iris Data [9], which can be dowloaded by ftp.ics.uci.edu/pub/machine-
learning-databases/iris. Verify that the covariance matrix of the transformed
data is the identity matrix.

5.11. Suppose that the features are statistically independent and that they
have the same variance o. In this case where the discriminant function is a
linear classifier. Given two adjacent decision regions D; and D, show that
their separating hyperplane is orthogonal to the line connecting the means pq
and .

5.12. Suppose that the covariance matrix is the same for all the classes. The
discriminant function is a linear classifier. Given two adjacent decision regions
D; and D, show that their separating hyperplane is not orthogonal to the line
connecting the means py and po.
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6

Clustering Methods

What the reader should know to understand this chapter

Basic notions of calculus and linear algebra.

Basic notions of machine learning.

Programming skills to implement some computer projects proposed in the
Problems section.

What the reader should know after reading this chapter

e The principles of clustering.
e The most popular clustering algorithms.

6.1 Introduction

Given a set of examples of a concept, the learning problem can be described
as finding a general rule that explains examples given only a sample of lim-
ited size. Examples are generally referred as data. The difficulty of the learn-
ing problem is similar to the problem of children learning to speak from the
sounds emitted by the grown-up people. The learning problem can be stated
as follows: given an example sample of limited size, to find a concise data de-
scription. Learning methods can be grouped in three big families: supervised
learning, reinforcement learning and unsupervised learning.

In supervised learning (or learning with a teacher), the data is a sample
of input output patterns. In this case, a concise description of the data is the
function that can yield the output, given the input. This problem is called
supervised learning because the objects under considerations are already asso-
ciated with target values, e.g. classes and real values. Examples of this learning
task are the recognition of handwritten letters and digits, the prediction of
stock market indexes.
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If the data is only a sample of objects without associated target values, the
problem is known as unsupervised learning. In unsupervised learning there is
no teacher. Hence a concise description of the data could be a set of clusters.
Typical examples of unsupervised learning tasks include the problem of image
and text segmentation. In unsupervised learning, given a training sample of
objects (e.g. images), the aim is to extract some structure from them. For
instance, identifying indoor or outdoor images or extracting face pixels in an
image. If some structure exists in training data, it can take advantage of the
redundancy and find a short description of data.

A general way to represent data is to specify a similarity between any
pairs of objects. If two objects share much structure, it should be possible
to reproduce the data from the same prototype. This idea underlies clustering
methods that form a rich subclass of unsupervised algorithms. It is not possible
to provide a formal definition of clustering, only an intuitive definition can
be given. Given a fixed number of clusters, we aim to find a grouping of
the objects (clustering) such that similar objects belong to the same group
(cluster). If it is possible to find a clustering such that the similarities of the
objects in one cluster are much greater than the similarities among objects
from different clusters, we have extracted structure from the training sample
so that the whole cluster can be represented by one representative data point.

Consider Figure 6.1, the goal of a clustering method, in this case, is to
identify the three subsets of black points closely grouped together. Each sub-
set of black points can be represented by one representative data (the grey
point). There are some practical reasons for which it is useful to consider
clustering methods. In some cases to associate to each sample of the data set
the appropriate class (or label), as requested by supervised methods, is a time
consuming activity. Data sets can contain hundreds of thousand of data, as in
the case of handwriting recognition, and some man-months can be required to
label the data. Moreover, clustering methods are very useful when the classes
are not apriori known. For instance, clustering methods can be used in the
customer databases of the companies (e.g. insurances, banks, electrical utili-
ties) to individuate groups of customers with the aim of addressing them some
marketing actions (e.g. discounts).

Following [18], clustering methods can be categorized into hierarchical
and partitioning clustering. Given a data set to be clustered X, hierarchi-
cal schemes sequentially build nested clusters with a graphical representation
known as dendrogram. Partitioning methods directly assign all the data points
according to some appropriate criteria, such as similarity and density, into dif-
ferent groups (clusters).

In this chapter we focus on the prototyped-based clustering (PBC') algo-
rithms, which is the most popular class of partitioning clustering methods.
PBC algorithms lead to the identification of a certain number of prototypes,
i.e. data points that are representative of a cluster, as the grey points in the
Figure 6.1. PBC algorithms are so popular that they are often referred simply
clustering algorithms.



6.2 Expectation and Maximization Algorithm 119

Pid N =
’ \\ L7 N
) L 2N ,® o,
\ \
,: ! I, L \
e o o o o ! [ ] |
\ \ 1
\ 1 \ [ J /
\ ’ N ’
N o . L J [ 4
N 4 Mo e
N - ~o_ -
~ o .
//"~\\\
@ '
/ \
f \
e o e |
\
\ ,I
\ 7
L J [ 4
~ P

Fig. 6.1. Each cluster of black points can be represented by a representative data,
i.e., the gray point.

This chapter presents the most PBC algorithms, paying special atten-
tion to neural-based algorithms. The chapter is organized as follows: Section
6.2 reviews the EM algorithm, that is a basic tool of several PBC algo-
rithms; Section 6.3 presents the basic concepts and the common definitions
to all clustering algorithms; Section 6.4 describes the algorithm K-Means;
Sections 6.5 and 6.6 review some soft competitive learning algorithms, that
is, self-organizing maps, neural gas and topology representing networks; gen-
eral topographic mapping is discussed in Section 6.7. Section 6.8 presents
fuzzy clustering algorithms. Section 6.9 reports, for the sake of completeness,
a brief description of hierarchical clustering methods. Finally, in Section 6.10
some conclusions are drawn.

6.2 Expectation and Maximization Algorithm*

This section describes the ezpectation and mazimization algorithm which is a
basic tool of several clustering methods.
Firstly, we recall the definition of the maximum-Ilikelihood problem.
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We have a density function p(x|©) that is governed by the set of parameters
O. We also have a data set X = (x1,...,x¢) and assume that the data vectors
of X are i.i.d.! with distribution p(x). Therefore, the resulting density for the

samples is
¢

c©1%) = [ p(x:l6). (6.1)
i=1
The function £(O|X) is called the likelihood of the parameters given the data,
or simply the likelihood function.
The likelihood is thought of as a function of the parameters © where the
data set X is fixed.
Now we can state the mazimum likelihood problem.

Problem 1 To find the parameter ©* that mazimizes the likelihood L(O]X),
that is,
0" = arg max L(O]|X). (6.2)

Since the product of several thousands of probabilities is a number too small to
be processed with computers, the maximization of the likelihood is addressed
through the equivalent maximization of the loglikelihood:

£
0" = argmax L(6|X) = arg mnglog[p(x,;|@)]. (6.3)

=1

In principle ©* can be found as the point where the derivative of the loglike-
lihood with respect to © is null, but this rarely leads to analitically tractable
equations. It is thus necessary to use other techniques for the maximum like-
lihood estimation of the parameters. The rest of this section introduces the
expectation-mazrimization method which is one of the main approaches used
to solve such problem.

6.2.1 Basic EM*

The expectation-mazimization (EM) [3][8][37] algorithm is a general method
for finding the Maximum-Likelihood estimate of the parameters of an under-
lying probability data distribution from a given data set when the data is
incomplete or the data has missing values. We say that the data is incomplete
when not all the necessary information is available. A data set has missing
values when there are components of any sample x; whose values are unknown.

There are two main applications of the EM algorithm. The former occurs
when the data indeed has missing values, due to limitations of the observation
process. The latter occurs when optimizing the likelihood function is analyti-
cally intractable and the likelihood function can be simplified by assuming the

! independent identically distributed.
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existence of additional missing (or hidden) parameters. The latter application
is commonly used in clustering.

We assume that the data set X is generated by some unknown probability
distribution p(x). We call X' the incomplete data. We assume that a complete
data set Z = (X,))) exists and the joint probability density function is:

p(2|0) = p(x,¥|0) = p(y|x, O)p(x|O).
With this new density function, we can define a new likelihood function:
L(O|Z2) = L(O|X,)) =p(X,)|O) (6.4)

called the complete data likelihood.

The value of this function can be modeled as a random variable distributed
following a unknown density function hx o()) where X and © are constants,
Y is a random variable. The original likelihood function £(@|X) is called
incomplete data likelihood function.

The EM algorithm iteratively performs two steps called Ezpectation and
Mazimization. At each iteration 7, the result is an estimate @(® of the parame-
ters. The first estimate ©(©) is usually obtained through a random initializa-
tion. After each iteration, the likelihood £ = £(©®|X) can be estimated.
The two steps of the EM algorithm are repeated until the algorithm con-
verges, i.e. until the estimate @) does not change anymore. Each iteration
is guaranteed to increase the loglikelihood and the algorithm is guaranteed to
converge to a local maximum of the likelihood function.

E-step*

The name of this step is due to the fact that is aimed at the estimation of the

complete data log likelihood log p(X, Y|©) with respect to the unknown data

Y given the observed data X and the current parameter estimates @(—1).
We define

Q6,0 V) = ¢ |logp(X,Y|0)| X, 001 (6.5)

where @01 are the current parameter estimates, & [[] is the expectation op-
erator and @ are the new parameters that we set to maximize Q.

While X and @0~ are constants, © is the variable to be estimated and
Y is a random variable governed by the distribution f(y|X,©¢=1).

The right side of (6.5) can be rewritten as:

ellogp(¥.¥10).2.0¢ V] = | logp(¥.¥10)f(y1X.60 Dty (6.0)
ye
where 7 is the range of y.
The expression of f(-) depends on the problem. Where f(-) has an ana-
lytical expression, the problem is simplified.
The evaluation of the equation (6.6) is called the E-step of the algorithm.
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M-step*

The second step (the M-step) of the EM algorithm is aimed at finding the
parameter set @) mazimizing Q(6,00~1)(hence the name maximization):

o = arg max Q6,00 1). (6.7)

As anticipated, the steps of the EM algorithm are repeated until the algorithm
converges. Each iteration is guaranteed to increase the loglikelihood and the
algorithm is guaranteed to converge a local maximum of the likelihood func-
tion. Many papers (e.g. [8][33][37]) have been dedicated to the convergence
rate of EM algorithm, in practice the algorithm converges after few itera-
tions. This is the main reason of the popularity of the EM algorithm in the
machine learning community.

6.3 Basic Notions and Terminology

This section presents the main notions related to the clustering problem and
introduces definitions and terminology used in the rest of the chapter.

6.3.1 Codebooks and Codevectors

Let X = (x1,...,%¢) be a data set, where x; € R™. We call codebook the
set W = (wy,...,wg) where each element (called codevector) w. € R™ and
K </,

The Voronoi region (R.) of the codevector w, is the set of all vectors in
R™ for which w,. is the nearest vector (winner)

R.={x€R" | c=argmin ||x —w,|}.
J
Each Voronoi region R; is a conver polytope? (in some cases unbounded),
where the convexity implies that
(Vx1,x2 € R;) = x1+a(xe—x1) €V 0<a<l)

is fulfilled.
The Voronoi Set (V.) of the codevector w, is the set of all vectors in X
for which w, is the nearest codevector

Ve={xe€ X |c=argmin ||x —w,l|}.
j

In Figure 6.2, the Voronoi sets are indicated by the dotted polygons. Voronoi
regions and sets are strictly related: suppose that a new input x arrives and
falls in the Voronoi region of the codevector w, this implies that x will belong
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Fig. 6.2. The clusters, formed by the black points, can be represented by their
codevectors (grey points). Dashed polygons identify the Voronoi sets associated with
each codevector.

Fig. 6.3. Codevectors (black points) induce a tessellation of the input space.

to the Voronoi set of the codevector w. The partition of R™ formed by all
Voronoi polygons is called Voronoi tessellation (or Dirichlet tessellation). An
example of Voronoi tessellation is shown in Figure 6.3. Efficient algorithms
to compute Voronoi Tessellation are only known for two-dimensional data
sets [30][32].

If one connects all pairs of codevectors for which the respective Voronoi
regions share an edge, i.e. an (n — 1)-dimensional hyperface for spaces of
dimension n, one gets the Delaunay Triangulation.

2 In mathematics, polytope is the generalization to any dimension of polygon in two
dimensions, polyhedron in three dimensions and polychoron in four dimensions.
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6.3.2 Quantization Error Minimization

The codebooks are obtained by means of clustering methods. Codebooks are
expected to be representative of the data from which they are obtained. A
common strategy adopted by clustering methods to obtain a representative
codebook consists in the minimization of the expected quantization error (or
expected distortion error). In the case of a continuous input distribution p(x),
the Expected Quantization Error E(p(x)) is:

K
Epx) =) /R I — welP*p(x)dx (6.8)
c=1 c

where R, is the Voronoi region of the codevector w. and K is the cardinality
of the codebook W.

In the real world we cope with finite data set X = (x1,...,x¢). There-
fore the minimization of the expected quantization error is replaced with the
minimization of the empirical quantization error E(X), that is:

Bx) = 2,3 3 k- wl? (6.9)

c=1x€eV,

where V, is the Voronoi set of the codevector w,.

When we pass from expected to empirical quantization error, the Voronoi
region has to be replaced with the Voronoi set of the codevector w,.. A typi-
cal application of the empirical quantization error minimization is the vector
quantization [15][23] (see Section 8.8).

6.3.3 Entropy Maximization

An alternative strategy to the quantization error minimization is the entropy
maximization. The aim of the entropy maximization is to obtain that the
Voronoi set of each codevector roughly has the same number of data. If
P(s(x) = w,) is the probability of w. being the closest codevector for a
randomly chosen input x, then:

1
P(s(x) =w.) = 174 Yw. e W (6.10)
where K is the cardinality of the codebook.
If we view the choice of an input x and the respective winner codevector
s(x) as a random experiment which assigns a value x € X to the random
variable X, then (6.10) is equivalent to maximizing the entropy

H(X) = -3 P(x)log(P(x)) = £ [log <P(1X)>] (6.11)

xXEX
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where &[] is the expectation operator.
If the data can be modeled from a continuous probability distribution p(x),
then (6.10) is equivalent to

/RC p(x)dx = % (Vw. € W) (6.12)

where R, is the Voronoi region of w,. and K is the cardinality of .
When the data set X is finite, the equation (6.10) corresponds to the
situation where each Voronoi set V. contains the same number of data points:

vl 1
ERS

(Vw, € W). (6.13)

An advantage of choosing codevectors to maximize entropy is the inherent
robustness of the resulting codebook. The removal of any codevectors affects
only a limited fraction of the data.

In general, entropy maximization and quantization error minimization are
antinomic, i.e. the maximization of the entropy does not lead to the minimiza-
tion of the quantization error and viceversa. For instance, consider a data set
where half of the samples lie in a very small region of the input space, whereas
the rest of data are uniformly distributed in the input space. By minimizing
the quantization error only one single codevector should be positioned in the
pointwise region while all others should be uniformly distributed in the input
space. By maximizing entropy half of the codevectors should be positioned in
each region.

6.3.4 Vector Quantization

An application of the minimization of the empirical quantization error is the
vector quantization (VQ), The goal of VQ is to replace the data set with the
codebook and it has been developed fifty years ago to optimize the trans-
mission over limited bandwidth communication. If the codebook is known by
both to sender and receiver, it is adequate to transmit codevector indexes
instead of vectors. Therefore, the receiver can use the transmitted index to
retrieve the corresponding codevector.

More formally, VQ is the mapping of continuous vectors x into a finite
set of symbols V' = {vy,...,vx}. Extensive surveys on VQ can be found
in [15][26], this section will focus on the general aspects of the VQ problem.

In mathematical terms, a quantizer is composed of two elements. The first
is the encoder v(x):

Y(x): X =V (6.14)

which maps d-dimensional input vectors x € X into channel symbols, i.e.
elements of the finite and discrete set V' (see above). The goal of the encoder
is to represent the data with a set of symbols that require as less space as
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possible for transmission and storage purposes. The second is the decoder ((v)
which maps channel symbols into elements of the reproduction alphabet W:

Bv):V—-W (6.15)

where W = (w1,...,wg) is a subset of the input space X, i.e. the codebook
previously introduced. The goal of the decoder is to reconstruct the original
data after they have been transmitted or stored as channel symbols. If V
contains K elements, then R = log, K is called rate of the quantizer, and
r = R/d is called rate per symbol. R corresponds to the minimum number of
bits necessary to account for all channel symbols, and r normalizes such a
quantity with respect to the dimensionality of the input space X. In general,
the quantization is a lossy process, i.e. the result X of the reconstruction
is different from the original input x. The cost associated to the difference
between x and X is called distorsion (see below for more details).

In principle, the channel symbols set V' could contain a single element v
and, as a result, K = 1 and R = 0, i.e. no space is needed for the data. On the
other hand, the reduction of R is constrained by the application needs and the
output of the decoder 5(v) must satisfy both subjective and objective criteria
that account for the quantization quality. The value of R is then a trade-off
between two conflicting needs: the reduction of the number of bits necessary to
describe the symbols of V" and the limitation of the distortion. Chapter 2 shows
that, in the case of audio quantization, the criteria are signal-to-noise ratio and
mean opinion score (MOS), two measures that are particularly suitable for the
audio case. In more general terms, the quantization quality can be assessed
through the distortion, i.e. a cost d(x,x) associated to the replacement of an
input vector x with the quantization result x = v(8(x)).

A quantizer can be considered good when the average distortion:

4
Eld(x,%)] = lim %Zd(xi,fq) (6.16)

is low. Such an expression can be applied in practice only when the distribu-
tion of x is known. However, this is not often the case and the only possible
solution is to measure the empirical average distortion over a data set of size
¢ sufficiently large to be representative of all possible data:

Eld(x,%)] =

| =

4
> d(xi %)) (6.17)
i=1

The most common expression of d(x,X) is the squared error:
d(x,%) = (x — %)? (6.18)

but other measures can be used [15]. Note that the signal-to-noise ratio ex-
pression of Equation (2.30) can be written as follows:
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E[x?]
SNR =10log;, {EM} (6.19)
and it corresponds to the empirical average distortion normalized with respect
to the average energy. This enables one to account for the fact that higher
distortions can be tolerated at higher energies. On the other hand, the meaning
of x? is not necessarily evident when passing from signals characterized by an
actual energy (like audio waves) to generic vectors.

A quantizer is said to be optimal when it minimizes the average distortion
and there are two properties that must be satisfied for a quantizer being
optimal [23].

Definition 10 Given a specific decoder 3(v), the optimal encoder y(x) selects
the channel symbol v* such that:

v* = arg gél‘r/l d(x, B(v)). (6.20)

Since v = 7(x), the above property means that, given the decoder 5(v), the
optimal encoder v*(x) is the one performing a nearest neighbor mapping:

7 (x) = arg min d(x, B(v(x))), (6.21)

where I is the set of all possible encoders.

Definition 11 Given a specific encoder v(x), the optimal decoder 5*(v) as-
signs each channel symbol v the centroid of all input vectors mapped into v by

e
1
(v) = —— i .22
=5 2 X (6.22)
x;:3(x)=v
where N(v) is the number of input vectors mapped into v.

The two properties enable one to obtain a pair (vy(x),3(v)) which mini-
mizes the empirical average distortion on a given training set. Note that the
clustering algorithms (see Chapter 6) can be interpreted as quantizers. In
fact, during the clustering each sample is attributed to a cluster v and this
can be thought of as an encoding operation. Vice versa, each sample can be
replaced with the representative of the cluster it belongs to and this can be
interpreted as a decoding operation. Moreover, the empirical quantization er-
ror introduced in Section 6.3 corresponds to the empirical average distorsion
described above.

6.4 K-Means

In this section we will describe the most popular clustering algorithm, K-
Means. K-Means has two different versions: batch and online. K-Means. The
term batch means at each step the algorithm takes into account the whole data
set to update the codebook. Vice versa the term online algorithm indicates
that the codebook update is performed after the presentation of each input.
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6.4.1 Batch K-Means

Batch K-Means [12][24] is the simplest and the oldest clustering method. De-
spite its semplicity it has been shown to be effective in several applications.
Batch K-Means assumes in the literature other names, e.g. in speech recog-
nition is called Linde-Buzo-Gray (LBG) algorithm [23], in the old books of
pattern recognition is also called generalized Lloyd algorithm.

Given a finite data set X = (x1,...,%¢), Batch K-Means works by repeat-
edly moving all codevectors to the arithmetic mean of their Voronoi sets. The
theoretical foundation of this procedure is that a necessary condition for a
codebook W to minimize the empirical quantization error

K
1
BX) =233 x - wel?
c=1x€eV,

is that each codevector w, fulfills the centroid condition [16]. In the case of
finite data set X' and the Euclidean distance, the centroid condition reduces

to: 1
W, = A Z x (6.23)

where V. is the Voronoi set of the codevector w,.
The batch K-Means algorithm is formed by the following steps:

1. Initialize the codebook W = (w1, ..., wg) with vectors chosen randomly
from the training set X.

2. Compute for each codevector w; € W its Voronoi Set V;

3. Move each codevector w; to the mean of its Voronoi Set.

1
Wi = > x (6.24)

4. Go to step 2 if any codevector, in the step 3, w; has been changed.
5. Return the codebook.

The second and third steps form a Lloyd iteration. It is guaranteed that
after a Lloyd iteration the empirical quantization error does not increase.
Besides, Batch K-Means can be viewed as an FM algorithm (see Section 2).
Second and third step are respectively the estimation and the maximization
stage. This is important since it means that K-Means is guaranteed to converge
after a certain number of iterations.

The main drawback of K-Means is its sensitivity with respect to outliers.
We recall that outliers are isolated data points whose position in the input
space is very far from the remaining data points of the data set. In equation
(6.24), we observe that outliers can affect the mean value in the codevector
computation. Hence outlier presence can influence significantly codevector
positions.
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6.4.2 Online K-Means

The batch version of the K-Means takes into account the whole data set X to

update the codebook. When the cardinality of the data set is huge (e.g. several

hundreds of thousand of samples), the batch methods are computationally

expensive. This can create problems for the storage in the memory or it can

take too much time. In this cases the online update becomes a necessity.
Online K-Means can be described as follows:

1. Initialize the codebook W = (w1, ..., wk) with vectors chosen randomly
from the training set X.

2. Choose randomly an input x according to the input probability function
p(x).

3. Fix the nearest codevector, i.e the winner w, = s(x)

= in [x—we. 6.25
s(x) = arg min |x - w| (6.25)

4. Adapt the winner towards x:
Awg = e(x — wy) (6.26)

5. Go to step 2 until a predefined number of iterations is reached.

The fact that only the winner s(x) is modified for a given input x is called
hard competitive learning or winner-takes-all (WTA) learning .

Winner-Takes-All Learning

A general problem occurring with winner-takes-all learning is the possible
existence of dead codevectors, i.e. codevectors with an empty Voronoi set.
These are codevectors which are never winner for any input and their position
never changes. A common way to avoid dead codevectors is to initialize the
codevectors according to the sample distribution of the data set. However if
the codevectors are initialized randomly according to the input distribution
probability p(x), then their expected initial local density is proportional to
p(x). This may be unoptimal if the goal is the quantization error minimization
and p(x) is highly nonuniform. In this case it is better to undersample the
region with high probability density, i.e. to use less codevectors than suggested
by p(x), and to oversample the other regions.

Another drawback of winner-takes-all learning is that different random
initializations can yield very different results. For certain initializations, WTA
learning may not be able to get the system out of the poor local minimum
where it was fallen. One way to cope with this problem to modify the winner-
takes-all learning in a soft competitive learning. In this case not only the winner
but also some other codevectors are adapted.
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Learning Rate

The online K-Means learning rule, espressed by Equation (6.26), can be justi-
fied in the following way. If we compute the derivative of the empirical quan-
tization error F(X) with respect to the codevector wg, we have:

0E(X)

Ow g

= (x — wyg). (6.27)

The above equation shows that online K-Means tries to minimize the empirical
quantization error using a steepest gradient descent algorithm [3]. The learning
rate €, that usually assumes a value between 0 and 1, determines how much
the winner is adapted towards the input.

To study how the learning rate value affects the codebook, we observe
that at each iteration is modified only the winner codebook. Therefore, for
each codevector we consider only the iteration for which it is the winner. To
this purpose, we assign to each codevector a time t that is increased by one
only in the iteration, in which the codevector is the winner. Therefore t allows
to compute the number of inputs for which a given codevector w. has been
winner in the past. For instance, ¢t = 5 means that there were five inputs for
which w, was the winner codevector. That being said, if the learning rate is
constant, i.e.

€=¢€p (0<e <1)

then it can be shown that the value of the codevector, at the time ¢, w.(t) can
be expressed as an exponentially decaying average of those inputs for which
the codevector has been the winner, that is:

We(t) = (1 €0)'we(0) + €0 D (1 — €)' 'x” (6.28)
=1

where xgc) is the i'" randomly extracted input vector such that s(x) = w..
Equation (6.28) shows that the influence of past inputs decays exponentially
fast with the number of inputs for which the codevector w,. is the winner.
The most recent input always determines a fraction € of the current value of
w.. This has the consequence that the algorithm has no convergence. Even
after a large number of inputs, the winner codevector can still be remarkably
changed by the current input.

To cope with this problem, it has been proposed to have a learning rate
that decreases over the time. In particular it was suggested [25] a learning
rate which is inverse proportional to the time t, i.e.

e(t) = - (6.29)

Some authors when quote K-Means refers only to online K-Means with a
learning rate such as the one defined in (6.29). The reason is that each code-
vector is always the exact arithmetic mean of the inputs for which it has been
winner in the past. We have:
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x{ + x5+ ...x¢

We(t) = we(t —1) +e(t)(xj —we(t — 1)) = "

(6.30)
The set of inputs x{,x§, ..., x{ for which a particular codevector w. has been
the winner may contain elements which lie outside the current Voronoi region
of V.. Therefore, although w.(t) represents the arithmetic mean of the inputs
it has been winner for, at time ¢ some of these inputs may well lie in Voronoi
regions of other units. Another important point about this algorithm that
there is no strict convergence, as is present in batch K-Means, since the sum
of the harmonic series has no convergence:

n
. 1
lim E - =00
n—oo 1
i=1

Since the series is divergent, even after a large number of inputs and low
values of the learning rates €(t) large modifications could happen in the winner
codevector. However such large modifications have very small probability and
many simulations show that the codebook rather quickly assume values that
are not changed notably in the further course of the simulation. It has been
shown that online K-Means with a learning rate such as the equation (6.29)
[25] converges asymptotically to a configuration where each codevector w, is
positioned so that it coincides with the expectation value

Ex|x € R;) = /R xp(x)dx (6.31)

of its Voronoi region R.. Equation (6.31) is the generalization, in the contin-
uous case, of the centroid condition (6.23).

Finally another possibility for decaying adaptation rule [34] consists in an
exponential decay according to

€(t) = & (9‘) e (6.32)

€

where ¢; and ey are the initial and the final values of the learning rate and
tmaz 1S the total number of iterations.

The most important drawback of online K-Means is its sensitivity with re-
spect to the input sequence ordering. Changing the order of the input vectors,
the algorithm performance can change notably.
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Fig. 6.4. In the SOM model, the codevectors are nodes of a two-dimensional grid.
For sake of simplicity, only the first three nodes are indicated.

6.4.3 K-Means Software Packages

We warmly recommend the reader to implement K-Means as a useful exercise.
Nevertheless you can find K-Means software packages in the public-domain
SOM Toolbox for Matlab 5. The toolbox, developed by Neural Network
Research Centre of the University of Helsinki, can be downloaded from
http://www.cis.hut.fi/projects /somtoolbox.

6.5 Self-Organizing Maps

In this section we describe a clustering method, the self-organizing map [20][21],
which performs a soft competitive learning since other codevectors, in addi-
tion to the winner, can be modified. self-organizing map (SOM), also called
self-organizing feature map (SOFM) [20], is based on earlier works [35] on the
organization of human visual cortex. Although SOM is generally considered
a dimensionality reduction method (see Chapter 11), it has been widely used
as clustering method. For this reason SOM is included in this chapter. SOM
is called a topology-preseving map because there is a topological structure
imposed on the codevectors. A topological map is a mapping that preserves
neighborhood relations. In SOM model the topological map consists in a two-
dimensional grid a;; in which each node is a codevector, as shown in Figure
6.4. The grid is inspired to the retinotopic map that connects the retina to
the visual cortex in higher vertebrates. For this reason, SOM has biological
plausibility unlike the other clustering algorithms. We assume, for sake of sim-
plicity, that the grid is rectangular, though other topologies are admitted (e.g.
hexagonal) in the model. The grid does not change during self-organization.
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Fig. 6.5. The distance between the units s and r is given by di(r, s) = |i—k|+|j—m|.

The distance on the grid is used to determine how strongly a unit r = ag,, is
adapted when the unit s = a;; is the winner.

As shown in Figure 6.5, the metric di(-), on the grid, is the usual L;
distance (also called Manhattan distance):

dy(r,s) =i —k|+1]j —m| (6.33)
The complete SOM algorithm is the following:

1. Initialize the codebook W = (w1, ..., wg) with vectors chosen randomly
from the training set X'. Each codevector is mapped onto a unit of the
grid. Initialize the parameter ¢:

t=20

2. Choose randomly an input x from the training set X
3. Determine the winner s(x):

= i — .34
s(x) = arg min [lx — we| (6.34)

4. Adapt each codevector w, according to:
Aw, = €(t) h(di(r,s)) (x—w,) (6.35)

where:

h(dy(r,s)) = exp <—Cm) (6.36)

(1) = e (6f> e (6.37)

€;

o(t) = o, (C’f> e (6.38)

gi
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and d; (r, s) is a function that depends on the Manhattan distance between
the units r and s that are the images of the codevectors w, and wg on
the grid.

5. Increase the time parameter t:

t=t+1 (6.39)

6. if t < tyae gO to step 2.

It is necessary to remark that the equation (6.36) can be replaced by any
decreasing function of the arguments o(t) and dy(r, s).

6.5.1 SOM Software Packages

A public-domain software package, SOM-PAK has been developed by T. Ko-
honen et al. [22]. SOM-PAK, written in C language, can be downloaded
from http://www.cis.hut.fi/research/som-lvg-pak.shtml 1t is also available a
SOM Toolbox for Matlab 5. The toolbox, developed by Neural Network
Research Centre of the University of Helsinki, can be downloaded from
http://www.cis.hut.fi/projects/somtoolbox. In addition to SOM, SOM Tool-
box contains packages for K-Means, principal component analysis [19] and
curvilinear component analysis [7].

6.5.2 SOM Drawbacks

SOM shares with online K-Means the sensitivity to initialization, the order of
input vectors and outliers. Besides, further problems have been identified in

[4]:

e The SOM algorithm is not derived by the minimization of a cost function,
unlike K-Means that can be obtained by the minimization of the empirical
quantization error. Indeed, it has been proved [10] that such a cost function
cannot exist for the SOM algorithm.

Neighborhood-preservation is not guaranteed by the SOM procedure.
The convergence of SOM algorithm is not guaranteed.

6.6 Neural Gas and Topology Representing Network

In this section we describe the neural gas and the topology representing net-
works, which do not impose a topology of fixed dimensionality to codevectors.
In the case of neural gas there is no topology at all; in the case of topol-
ogy representing networks the topology of the network depends on the local
dimensionality of the data and can vary within the input space.
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6.6.1 Neural Gas

The neural gas algorithm [27] sorts for each input x the codevectors according
to their distance to x. The n codevectors closest to x are updated. Hence,
neural gas performs a soft competitive learning since other codevectors, in
addition to the winner, can be modified. The Neural Gas algorithm is as
follows:

1. Initialize the codebook W = (w1, ..., wg) with vectors chosen randomly
from the training set X'. Initialize the time parameter t:

t=0.

o

Choose randomly an input x from the training set X

3. Order all elements of W according to their distance to x, i.e. to find
the sequence of indices (ig, i1, ..., 4n—1) such that w;, is the nearest
codevector to x, w;, is the second-closest to x and so on. Therefore w;,_,
is the p'"-closest to x. Following [28] we denote with k;(x,X) the rank
number associated with the codevector w;.

4. Adapt the codevectors according to:

where:

At) = Ay (Af ) (6.41)

i
€ imtaa;
e(t) =€ () (6.42)
€;
kg
h)\(t)(ki) =e O, (6.43)

5. Increase the time parameter t:
t=t+1 (6.44)

6. if t < tyae gO to step 2.

6.6.2 Topology Representing Network

The main difference with respect to neural gas is that the topology representing
networks (TRN) [29] model at each adaptation step creates a connection
between the winner and the second-nearest codevector. Since the codevectors
are adapted according to the neural gas method a mechanism is needed to
remove connections which are not valid anymore. This is performed by a local
aging connection mechanism. The complete TRN algorithm is the following:
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Initialize the codebook W = (w1, ..., wg) with vectors chosen randomly
from the training set X. Initialize the connection set C, C C X x X, to the
empty set C = @. Initialize the time parameter t: ¢t = 0.

Choose randomly an input x from the training set X.

Order all elements of W according to their distance to x, i.e. to find
the sequence of indices (ig, 41, ..., ix—1) such that w;, is the nearest
codevector to x, w;, is the second-closest to x and so on. Hence w;,_, is
the p'"-closest to x. We denote with k;(x, X') the rank number associated
with the codevector w;.

Adapt the codevectors according to:

Aw; = €(t) hye(ki(x, X)) (x —wy) (6.45)

where:

t

At) = A (i}”) e (6.46)

( ) e (6.47)

Py (ki) = (6.48)
If it does not exist already, create a connection between ig and i1:
C=CU{ip,i1}. (6.49)

Set the age of the connection between iy and iy to zero, refresh the con-
nection:

age iy i) = 0

Increment the age of all edges emanating from ig:
age(iy,i) = AG€(iy,i) +1 (VZ S Nig) (650)

where NN;, is the set of direct topological neighbors of the codevector w;,,.
Remove connections with an age larger than maximal age T'(¢)

T(t) =T, (?f) e . (6.51)

Increase the time parameter t:
t=1t+1. (6.52)

If t < tyae gO to step 2.
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For the time dependent parameters suitable initial values (\;, ¢;, T;) and final
values (Ag, ef, Tr) have to be chosen.

Finally we can underline that the cardinality of C can be used to estimate
the intrinsic dimensionality® [5] of the data set X. See Chapter 11 for more
details.

6.6.3 Neural Gas and TRN Software Package

A public-domain software package, GNG, has been developed by the Institut
fur Neuroinformatik of Ruhr-Universitat of Bochum. GNG can be downloaded
from:
ftp://ftp.neuroinformatik.ruhr-uni-bochum.de/pub/software/NN/DemoGNG.

The program package, written in Java, contains implementations of Neural
Gas and TRN.

6.6.4 Neural Gas and TRN Drawbacks

Neural gas and TRN share with other online algorithms (e.g. online K-Means
and SOM) the sensitivity to initialization, order of input vectors and outliers.
Besides, the convergence of neural gas and TRN is not guaranteed.

6.7 General Topographic Mapping*

In this section we describe general topographic mapping (GTM) [4]. Although
GTM is generally considered a dimensionality reduction method, it is included
in this chapter for its strict connection with SOM. GTM uses an approach
different from the clustering methods that we have previously described. GTM
does not yield a codebook representative of the data set, but computes an
explicit probability density function p(x) in the data (or input) space. GTM
models the probability distribution p(x) in terms of a number of latent (or
hidden) variables.

6.7.1 Latent Variables*

The goal of a latent variable model is to find a representation for the distri-
bution p(x) of the data set in an N-dimensional space in terms of L latent
variables X = (X3, ..., X). This is achieved by first considering a nonlinear
function y(X; W), governed by a set of parameters W, which maps points
X in the latent space into corresponding points y(X; W) in the input space.
We are interested in the situation in which the dimensionality L of the la-
tent space is lower than the dimensionality IV of the input space, since our

3 The intrinsic dimensionality of a data set is the minimum number of free variables
needed to represent the data without information loss.
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premise is that the data itself has an intrinsic dimensionality (see footnote in
Section 6.2) which is lower than N. The transformation y(X, W) then maps
the latent space into an L-dimensional manifold* embedded within the input
space. If we define a probability distribution p(X) on the latent space, this
will induce a corresponding distribution p(y|WW) in the input space. We shall
refer to p(X) as the prior distribution of X. Since L < N, the data distribu-
tion in input space would be confined to a manifold of dimension L. Since in
reality the data will only approximately lie on a L-dimensional manifold, it is
appropriate to include a noise model for the x data vector. We therefore define
the distribution of x, for given X and W, to be a spherical Gaussian centred
on y(X, W) having variance o2 so that p(x|X, W, 0?) ~ N (x|y(X, W), 1),
where I is the identity matrix.

The distribution in input space, for a given value of W is then obtained
by integration over the X-distribution

p(x|W, 0?) = / N(xly(X, W), 0*T)p(X)dX. (6.53)

For a given dataset X = (x1,...,%;) we can determine the parameter matrix
W, and the variance o2, using maximum likelihood principle [9], where the
log-likelihood function is given by

4
LW, X,0%) =Y " log N (x,|y(X, W), oI). (6.54)

n=1

In principle we can now seek the maximum likelihood solution for the weight
matrix, once we have specified the prior distribution p(X) and the functional
form of the mapping y(X; W), by maximizing L(W, X, 0?).

The latent variable model can be related to the SOM algorithm (see Section
6.5) by choosing p(X) to be a sum of delta functions centred on the nodes of
a regular grid in latent space

1 K
p(X) = 2 36X -X;),

Jj=1

where §(+) is the Kronecker delta function.® This form of p(X) allows to com-
pute the integral in (6.53) analytically. Each point X, is then mapped to a
corresponding point y(X;, W) in input space, which forms the centre of a
Gaussian density function.

Hence the distribution function in input space takes the form of a Gaussian
mixture model

4 We assume, for the sake of simplicity that the definition of a manifold coincides
with the one of subspace. The manifold is formally defined in Chapter 11.
® The Kronecker delta function §(x) is 1 when x = 0 and 0 otherwise.
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P, 0%) = o ZN Xy (X, W), 0°1)

and the log likelihood function (6.54) becomes

K
L(W, X,0%) Zlog Z (Xnly(X;, W), a2T) | . (6.55)

n=1

This distribution is a constrained Gaussian mixture since the centers of the
Gaussians cannot move independently but are related through the function
y(X, W). Since the mapping function y(X, W) is smooth and continuous, the
projected points y(X;, W) will necessarily have a topographic ordering in the
sense that any two points x, and x,, are close in latent space will map to
points y(x1, W) y(xa, W), which are close in the data space.

6.7.2 Optimization by EM Algorithm*

GTM maximizes Equation (6.55) by means of an EM algorithm (see Section
6.2). By making a careful choice of the model y(X, W) we will see that the
M-step can be solved exactly. In particular we shall choose y(X, W) to be
given by a generalized linear network model of the form

y(X, W) = Wo(X) (6.56)

where the elements of ¢(X) = (¢1(x),. .., Pnm(x)) are M fixed basis functions
¢i(x) and W is a N x M matrix with elements wy;.
By setting the derivatives of (6.55) with respect to wy; to zero, we obtain

oTGowT = T RT (6.57)

where @ is a K x M matrix with elements @;; = ¢;(X;), T is a £ x N matrix
with elements zy, and R is a K x ¢ matrix with elements R;, given by:

N(Xn ‘y(XJa W)7 U2H)
K

3 N (aly(Xe, W), 0°T)

s=1

Rjn(W,0%) = (6.58)

which represent the posterior probability, or responsibility, of the mixture
component j for the data point n.
Finally, G is a K x K diagonal matrix , with elements G;

4
Gij =Y Rjn(W,0”)

n=1
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Equation (6.57) can be solved for W using standard matrix inversion tech-
niques. Similarly, optimizing with respect to 02 we obtain

K ¢
1
WZZ Rjn (W, 0?)[[y(X;, W) — x| (6.59)

The equation (6.58) corresponds to the E-step, while the equations (6.57)
and (6.59) corresponds to the M-step. Hence GTM is convergent. An online
version of GTM has been obtained by using the Robbins-Monro procedure to
find a zero of the objective function gradient, or by using an online version of
the EM algorithm.

6.7.3 GTM versus SOM*

The list below describes some SOM drawbacks and how the GTM algorithm
addresses them.

e The SOM algorithm is not derived by optimizing a cost function, unlike
GTM.

e In GTM the neighborhood-preserving nature of the mapping is an auto-
matic consequence of the choice of a smooth, continuous function y(x, W).
Neighbourhood-preservation is not guaranteed by the SOM procedure.

e Convergence of SOM algorithm. Vice versa, convergence of the batch GTM
algorithm is guaranteed by the EM algorithm, and the Robbins-Monro
theorem provides a convergence proof for the online version.

e GTM defines an explicit probability density function in data space. In
contrast, SOM does not define a density model. The advantages of having
a density model include the ability to deal with missing data and the
straightforward possibility of using a mixture of such models, again trained
using EM.

e For SOM the choice of how the neighborhood function should shrink over
time during training is arbitrary and so this must be optimized empirically.
There is no neighborhood function to select for GTM.

e It is difficult to know by what criteria to compare different runs of the
SOM procedure. For GTM one simply compares the likelihood of the data
under the model, and standard statistical tests can be used for model
comparison.

Nevertheless there are very close similarities between SOM and GTM tech-
niques. At an early stage of the training the responsibility for representing
a particular data point is spread over a relatively large region of the map.
As the EM algorithm proceeds so this responsibility bubble shrinks automat-
ically. The responsabilities (computed in the E-step) govern the updating of
W and o2 in the M-step and, together with the smoothing effect of the basis
functions ¢;(z), play an analogous role to the neighbourhood function in the



6.8 Fuzzy Clustering Algorithms 141

Fig. 6.6. The two clusters (black points and grey points) are partially overlapped.
The circle indicates a point that is assigned to both clusters.

SOM algorithm. While the SOM neighbourhood function is arbitrary, how-
ever, the shrinking responsibility bubble in GTM arises directly from the EM
algorithm.

6.7.4 GTM Software Package

A GTM Toolbox for Matlab, has been developed [4]. The toolbox can be
downloaded from http://www.ncrg.aston.ac.uk/GTM.

6.8 Fuzzy Clustering Algorithms

While in the algorithms described so far, each input x belongs to one and
only one cluster, in fuzzy clustering algorithms the data points are assigned
to several clusters with varying degrees of membership.

The idea is based on the observation that, in real data, data clusters usu-
ally overlap to some extent and it is difficult to trace clear borders among
them. Therefore, some data vectors cannot be certainly assigned to exactly
one cluster and it is more reasonable to assign partially to several clusters.
Consider the Figure 6.6 the two clusters, formed by the black and the grey
points, are partially overlapped. Hence it is reasonable to suppose that some
points (e.g. the circle) are assigned to both clusters. This section provides a
brief description of the most popular and widely applied fuzzy clustering al-
gorithm, the fuzzy C-Means algorithm (FCM) [2]. For comprehensive surveys
on fuzzy clustering algorithms, see [1][18].
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6.8.1 FCM

Let X = (x1,...,%¢) be a data set, where x; € R™ and W = (wq,...,w¢)
the codebook. As the K-Means algorithm, FCM assumes that the number of
clusters is a priori known. Unlike K-Means, the number of clusters is called
C. FCM minimizes the cost function:

c ¢
Teom = > ugllx; — wil]? (6.60)

i=1 j=1

subject to the m probabilistic constraints:

C
duy=1 j=1..L
i=1

Here, u;; is the membership values of input vector x; belonging to the cluster
i, S stands for the degree of fuzziness. Using Lagrangian multipliers method
the condition for local minima of Jpoas is derived as

c 2171t
i = Z M o Vi, j (6.61)
! 1% — Wil ’

k=1

and
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The final cluster centers can be obtained by the iterative optimization scheme,
called the alternative optimization (AO) [31] method. The online version for
the optimization of Jpcps with stochastic gradient descent method is known
as fuzzy competitive learning [6].

6.9 Hierarchical Clustering

In this section we briefly discuss an alternative clustering approach to the PBC
methods previously described in the rest of the chapter, i.e. the hierarchical
clustering. PBC methods do not assume the existence of substructures in the
clusters. Nevertheless, it can happen that data are organized hierarchically,
i.e. clusters have subclusters and subclusters have subsubclusters and so on.
In this case PBC methods are not effective and have to be replaced with
alternative methods, i.e. hierarchical clustering methods. We pass to introduce
them. Given a data set X = {x1,...,x¢} € R", we consider a sequence of
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Fig. 6.7. A dendrogram.

partitions of its elements into K clusters, where K € [1,/] is an integer not
fixed a priori. The first possible partition of X is the one into ¢ clusters, where
each cluster has a single element. The second partition divides X into £ — 1
clusters and so on until the ¢** partition in which all data samples are grouped
in a single cluster. The generic [*" partition, that we simply call the partition
at [*" level, has K clusters where K = ¢ — [+ 1. Given any two data samples
x4 and xp, at some level they will belong to the same cluster. If the partition
sequence is such that whenever two data samples are elements of the same
cluster at level o remain elements of the same cluster at the levels higher than
«, the sequence is called hierarchical clustering. The hierarchical clustering is
generally represented by means of a tree, called dendrogram. A dendrogram
for a data set with ten samples is shown in Figure 6.7. At level [ = 1 each
cluster has a single pattern. At level [ = 2, zg and z19 are gathered in a single
cluster. At last level, [ = 10, all pattern belong to a single cluster.
Hierarchical clustering methods can be grouped in two different fami-
lies: agglomerative and divisive. Agglomerative methods use a bottom-up ap-
proach, i.e. they start with ¢ clusters formed by a single pattern and build the
partition sequence merging them successively. Divisive methods are top-down
i.e. they start with a single cluster in which the patterns are gathered and at
the second level the cluster is splitted in two other clusters and so on. There-
fore the partition sequence is built splitting clusters successively. For sake of
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semplicity, we only describe the agglomerative methods. The most popular
agglomerative method is the so-called agglomerative hierarchical clustering
(AHC). AHC is formed by the following steps:

1. Given a dataset X = {x,...,x¢}, choose K and initialize K = ¢ and
Si=1{x;} (i=1,...,0).

K=K-1

Find the two nearest clusters S; and S;

Merge S; and §j, i.e. §; = §; U S; and delete S;.

IfK’;éKgotostepQ

6. return K clusters S;

Bl o

If in the AHC algorithm we choose K = 1 the algorithm produces a single
cluster and we obtain a dendrogram like the one described in figure 6.7. The
second step of AHC finds among clusters S; the two nearest ones. In order to
find the nearest clusters, we need to measure, for each couple of clusters Sy
and Sp their distance. Many definitions of distance between clusters [9] have
been proposed, the most popular are:

Dnin(Sa,Sp) = i - 6.63
(Sa,Sp) = _gmin  [x-y] (6:63)
Dmaac(SAa SB) = xESIilg/)éSB HX - YH (664)

When Equation (6.63) is used to measure the distance between clusters, AHC
is referred as nearest-neighbor cluster algorithm or minimum algorithm. Vice
versa, when Equation (6.64) is used AHC is called farthest-neighbor cluster
algorithm or maximum algorithm.

Some variants of the AHC algorithms have been proposed, reader can find
further details in [9)].

6.10 Conclusion

This chapter has presented the most popular and widely applied prototype-
based clustering algorithms, with a special attention to neural-based algo-
rithms. Firstly we have recalled the expectation and maximization algorithm,
that is the basic tool of several clustering algorithms. Then the chapter has
described both batch and online versions of the K-Means algorithm, some
competitive learning algorithms (SOM, neural gas and TRN) and the general
topographic mapping with a discussion about its connections with SOM. We
have described only algorithms whose codevector number has to be fixed a
priori. Clustering algorithms whose codevector number has not necessarily to
be fixed can be found in [13][14]. Clustering methods which produce nonlinear
separation surfaces among data, i.e. kernel and spectral clustering methods,
will be discussed in Chapter 9.
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None of the algorithms described in the chapter is better than the others.
On the other hand, the evaluation of a clustering technique is a difficult prob-
lem. The clustering leading to the best results is assumed to perform better
than the others. The concept of the best clustering depends on the applica-
tion. The best clustering can be the one that minimizes the quantization error
but not necessarily. As an example, consider a clustering application which
performs a vector quantization to reduce the amount of data, to be transmit-
ted through a channel. In this case, the performance measure of the process
is the quality of the signal after the transmission. The use of different cluster-
ing methods techniques will result in a different quality of the output signal
that provides an indirect measure of the clustering effectiveness. However, the
literature offers some directions to assess the clustering algorithm robustness.

We call the assumed model of a clustering algorithm, the ensembles of the
assumptions (e.g. the model assumptions) on which the algorithm is based.
Examples of the assumptions are the absence of the outliers and data are
i.i.d. Following [17] a robust clustering algorithm should possess the following
properties:

1. it should have a reasonably good accuracy at the assumed model;

2. small deviations from the model assumption should affect only slightly
the performance;

3. larger deviations from the model assumption should not cause a catastro-
phe, i.e. the algorithm performances decrease dramatically.

The algorithms presented in this chapter satisfy in general the first condition,
but often lack in addressing the other issues.

Finally, we conclude the chapter providing some bibliographical remarks.
A good survey on clustering methods can be found in [18]. A comprehensive
survey of SOM model can be found in [21]. Neural gas and TRN are described
in [28][29]. GTM is fully discussed in [4]. Fuzzy clustering methods are widely
reviewed in [1]. Hierarchical clustering methods are described in detail in [9)].

Problems

Problem 6.1. Implement batch K-Means and test it on Iris Data [11] that
can be dowloaded at ftp.ics.uci.edu/pub/machine-learning-databases /iris. Plot
the quantization error versus the number of iterations.

Problem 6.2. Can K-Means separate clusters nonlinearly separated using
only two codevectors? And neural gas and SOM? Explain your answers.

Problem 6.3. Study experimentally (e.g. on Iris Data) how the initialization
affects K-Means performances.

Problem 6.4. Suppose that the empirical quantization error E(X) of a data
set X = (x1,...,X¢) assumes the following form:
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Z Z (x,%x) — 2G(x,W.) + G(w,, w,))

c=1zeV,

where the function G(-) is G(z,y) = exp ( M) Find the online K-Means

learning rule, in this case.

Problem 6.5. Suppose that the empirical quantization error E(X) of a data
set X assumes the form of Exercise 4. Find the neural gas learning rule.

Problem 6.6. Implement K-Means online and test it on Wisconsin Breast
Cancer Database [36] which can be dowloaded at ftp.ics.uci.edu/pub/machine-
learning-databases/breast-cancer-wisconsin. Compare its performances with
Batch K-Means’s ones. Use in both cases only two codevectors.

Problem 6.7. Use SOM-PAK on Wisconsin Breast Cancer Database. Divide
the data in three parts. Train SOM on the first part of data (training set)
changing number of codevectors and other neural network parameters (e.g.
learning rate). Select the neural network configuration (best SOM) that has
the best performance on the second part of data (validation set). Finally
measure the best SOM performances on the third part of data (test set).

Problem 6.8. Using the function sammon of SOM-PAK visualize the code-
book produced by best SOM (see Exercise 7).

Problem 6.9. Permute randomly Wisconsin Breast Cancer Database and re-
peat again the Exercise 7. Compare and discuss the results.

Problem 6.10. Implement neural gas and test it on Spam Data which can be
dowloaded at ftp.ics.uci.edu/pub/machine-learning-databases/spam. Use only
two codevectors.
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7

Foundations of Statistical Learning
and Model Selection

What the reader should know to understand this chapter

e Basic notions of machine learning.
e Notions of calculus.
e Chapter 5.

What the reader should know after reading in this chapter

Bias-variance dilemma.

Model selection and assessment.
Vapnik-Chervonenkis theory.
Vapnik-Chervonenkis dimension.
BIC, AIC.

Minimum description length.
Crossvalidation.

7.1 Introduction

This chapter has two main topics the the model selection and the learning
problem.

Supervised machine learning methods are characterized by the presence
of the parameters that have to be tuned to obtain the best performances.
The same learning algorithm can be trained using different configurations of
parameters generating a different learning machine. The problem of selecting
among different learning machines the best one is called model selection. We
will review the main model selection methods discussing their connections
with statistical learning theory.

The learning problem will be discussed under statistical point of view intro-
ducing the main issues of statistical learning theory (or Vapnik-Chervonenkis
theory).
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The chapter is organized as follows: Section 7.2 describes the bias and vari-
ance that is the simplest quantities to measure the performances of a learning
machine. The complexity of a learning machine is discussed in Section 7.3.
Section 7.4 introduces intuitively the Vapnik-Chervonenkis dimension (or VC
dimension). The main results of the Vapnik-Chervonenkis theory of learn-
ing and the formal definition of VC dimension are presented in Section 7.5.
Section 7.6 presents two criteria for model selection, i.e. Bayesian Informa-
tion Criterion (BIC) and Akaike Information Criterion (AIC). In Section
7.7 the minimum description length (MDL) approach to the model selection
is discussed showing that is equivalent to the BIC criterion; crossvalidation,
which is the one of most popular method for model selection is reviewed in
Section 7.8. Finally, in Section 7.9 some conclusions are drawn.

7.2 Bias-Variance Dilemma

In this section we will introduce two new quantities, the bias and the wvari-
ance, which can be used to measure the performance of a supervised learning
machine. The bias measures the accuracy of the learning machine, i.e. how
much the output of the learning machine is close to its learning target. Large
bias indicates that the output of the machine is not close to its target, that
is the learning machine is a poor learner.

The variance measures the precision of the learning. Large variance indi-
cates that the output of the machine has a large interval of confidence, i.e. the
machine is not precise in learning. A learning machine which is not precise
in learning is called a weak learner. In the rest of the section we will show
that bias and variance are not independent. They generate the so-called phe-
nomenon of bias-variance dilemma. Firstly, we will discuss the bias and the
variance in the case of regression.

7.2.1 Bias-Variance Dilemma for Regression

Consider a function F : R™ — R. We try to estimate F(-) using samples of the
set D that has been generated by F'(x). We indicate with f(x), the estimate of
F(x). The quality of the estimate can be measured by the mean square error.
If we indicate with £[(f(x,D) — F(x))?] the average error over all training
sets D of the same cardinality ¢, it is possible to show (see Problem 7.1) that
it is equal to:

El(f(x,D)=F(x))’] = (E[f(x, D)= F(x))*+&[(f(x,D)~E[f (x,D)))*]. (7.1)

The term £[f(x,D) — F(x)] is called the bias, that is the difference between
the expected value and the true value (often not known) of the function. The
term E[(f(x,D)—E&[f(x,D)])?] is called the variance. A small bias means that
the estimate of F(-) has a large accuracy. A small variance indicates that the
estimate of F'(+) varies a little changing the training set D.
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Summing up, the mean-square error can be decomposed as the sum of
the square of the bias and the variance. Such decomposition is called the
bias-variance dilemma or bias-variance trade-off [13].

If a learning algorithm, that we call simply a model, has many parameters
it will be characterized by a low bias, since it usually fits very well the data.
At the same time, the model will be characterized by a large variance since it
overfits the data.

On the other hand, if the model has a small number of parameters, it will
be characterized by a large bias, since it usually does not fit well the data.
At the same time, the model will be characterized by a small variance, since
the fit does not vary much changing the data set. Finally, we point out that
the best strategy consists in keeping low variance and bias at the same time.
This strategy can be generally implemented when we have information about
the function that has to be approximated.

7.2.2 Bias-Variance Decomposition for Classification*

In this section we discuss the bias-variance decomposition for classification.
For sake of simplicity, we only consider the case of binary classification. Let
v : R"™ — {0,1} be the discriminant function. If we consider ¥(-) under a
Bayesian viewpoint, we have:

7(x) = Py = 1|x) = 1 - P(y = 0}x). (7.2)

Now we study the binary classification problem using the same approach used
for regression. Let y(x) be a discriminant function (see Chapter 5), defined
by:

y(x) =v(x) + ¢ (7.3)
where ¢ is a zero-mean random variable having a binomial distribution with
variance

o?(¢lx) = 7(x)(1 = 7(x)).
The function, that has to be approximated, v(-) can be represented in the
following way:

v(x) = E(ylx). (7.4)
If we want to apply the same framework of the regression, we have to look for
an estimate f(x, D) that minimizes the usual mean square error, that is:

El(f(x,D) —y)’]. (7.5)
In addition, we assume that the two classes C;, C2 have the same prior prob-
abilities, that is:
P(C1) = P(C2) =

1

5
Therefore the Bayes discriminant has threshold y, = % and yields a decision
boundary formed by patterns such that v(x) = %
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Given a training set D if the classification error is equal to the error of the
Bayes discriminant, it assumes the smallest error (Bayes discriminant error),
that is:

P(f(x,D) =y) = P(yp(x) # y) = minfy(x), 1 —~v(x)]. (7.6)

Converserly, if it does not coincide with Bayes discriminant error it assumes
the form (see Problem 7.2):

P(f(x,D)) = [27(x) = 1| + P(yp(x) = y)- (7.7)

If we compute the mean over all data set of same cardinality ¢, we have:

P(f(x,D) #y) = [2v(x) = HIP(f(x,D) # y) + P(yo # v)- (7.8)

We call the term P(f(x,D) # y) boundary error, since it is the incorrect
estimation of the optimal boundary [9]. The boundary error depends on
P(f(x,D)), which is the probability of obtaining an estimate f(x) given a
data set D. If we assume that P(f(x,D)) is a Gaussian, it can be shown [9]
that the boundary error P(f(x,D) # y) is given by:

PUD) #) =0 [sign (1) - 3 ) £/ D) = 3 ) a(D)

(7.9)
where sign is the signum function and ¥(+) is given by:

v = |1 erf( )]

and er f(-) is the error function.!

In the Equation (7.9) we can identify two terms. The former, called bound-
ary bias term(By) [9], is represented by sign (v(z) — 3) (£(f(x,D) — 1). The
latter, called variance term (V;), is o(f(x; D))" .

Therefore more concisely the equation can be (7.9) rewritten as:

P(f(x,D) #y) =¥ [BpV3]. (7.10)

In analogy with bias-variance decomposition in regression, we have repre-
sented the boundary error in classification in terms of boundary bias and
variance. Whereas in regression the decomposition is simply additive, in the
classification the decomposition is more complicated. The decomposition is
nonlinear, due the presence of ¥ function, and multiplicative, since the argu-
ment of ¥ is given by the product of the boundary bias and the variance. Since
the bias is expressed in terms of a signum function, it affects the boundary er-
ror in a limited way. Therefore the boundary error depends essentially on the

Yerf(u) = % fou e du.
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variance. Conversely to the regression case, in classification it is fundamental
to keep the variance as small as possible. On the contrary, the magnitude of
boundary bias is not really important since only its signum is taken. This
situation is expressed concisely in the sentence that in the classification the
variance dominates the bias. In the next section we discuss another approach
to characterize a learning machine that consists in measuring its complezxity.

7.3 Model Complexity

In this section we introduce the concept of complexity in a learning machine or
model complexity. In order to fix the ideas we consider a classification problem.
In this case the data set (or training set) is formed by samples input-output,
where to each input pattern is associated the desired output. A training set
D can be formalized as follows:

D= {(X1’y1)7 R (Xe,yé)}

where the vectors x1,x;, € X C R" are called patterns and yi,...,y, take
values in Y. Y = {Y7,..., Yy} is a discrete set, whose elements Y; are called
classes. The classification problem consists in finding a function f: X — Y.
We call this function classifier. The performance of the trained classifier is
assessed measuring its capability to predict correctly a set of unseen data,
called test set. Training and test sets are disjoint. The performances of the
classifier on the training set is measured by the training error (or empirical
risk) which is the average loss over the training set, that is:

Errirqin =

¢
ZL(yi,ﬂxi)) (7.11)

S Y

where y; is the desired output (or target) for the pattern x; and f(x;) is
the value computed by the classifier. A typical loss function is the zero-one
loss (see Chapter 5). The loss is zero if the sample is classified correctly, one
otherwise. We restrict our attention to the binary classification in which y can
assume the conventional values {1,—1}. Hence the zero-one loss is:

1
L(ys, f(xi)) = §|yi — f(xi)]- (7.12)
and the training error becomes:
11
Errirain = 5 Zl Slvi = F(xi)l. (7.13)

Given a test set the classifier performances are measured by the Test error
(or generalization error or expected risk), computed on test samples drawn on
the basis of the underlying probability distribution P(x,y), that is:
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Error

Complexity

Fig. 7.1. Qualitative behavior of Etrqin (solid curve) and Fes: (dashed curve) in
function of the complexity.

Etest = S[L(y7 f(X)] (714)

where x is a generic element of the test set and y the respective target. If we
assume the zero-one loss function Equation (7.14) becomes:

Bt = [ 5lu= fG0laP(x.) (7.15)

where we use the integral since the cardinality of test set can be infinite. In
addition to the training and test error there is another quantity that charac-
terizes the classifier, the so-called complexity.

Although the classifier complexity will be defined precisely in the next
section, we assume which roughly depends on the number of parameters of
the classifier. The higher is the number of the parameters the higher is its
complexity. Being said that, we return to the training and test error and we
observe that they are related by the following inequality:

Etest S Et’rain + Eest (716)

where E.,; is called estimation error (or confidence term or capacity term).
Training and test error can differ significantly. Training error tends to decrease
when the complexity of the classifier increases. On the other hand, the estima-
tion error increases with the complexity increment, as shown in Figure 7.1. A
classifier with no training error is usually not useful. Since it overfits the data,
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Fig. 7.2. Qualitative behavior of the error on the training and test set in function
of the classifier complexity.

it often performs poorly on the test set. The qualitative behavior of the error
on the test set in function of the classifier complexity is shown in Figure 7.2.
The curve above described represents qualitatively the generalization error
in function of the complexity. In order to design accurate classifiers we need
methods for estimating the test error curve quantitatively.

This chapter presents some methods for estimating the test error in func-
tion of the model complexity. The model usually has a vector of parameters o
that has be set up in order to minimize the test error. We remark that we have
two different goals. The first goal is estimating the performance of different
models, i.e. with different values of «, with the aim of picking the best one.
This goal is called model selection. The second goal consists in estimating the
generalization error, after having selected the final model. This goal is called
model assessment [14].

If we have enough data, as it usually happens in handwriting recogni-
tion, a usual approach for model selection and assessment consists in dividing
randomly data in three subsets: a training set, a validation set and a test set.

The training set is used to train the different models, i.e. the models with
different values of . The validation set is used to estimate the generalization
error for the models and to pick the best model. The test set is used to assess
the test error of the selected model. The test set has to be used only for
the model assessment. On the contrary, if we use the test set repeatedly, for
instance in the phase of model selection, the model overfits the test set. In
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this way, the test error of the selected model can underestimate notably the
real generalization error. It is not possible to provide a general rule to assess
the sizes of the training, validation and test set, since the size depends on
the signal-to-noise ratio and the size of the overall data set. For instance, if
the data set is very large a possible choice consists in dividing the data set in
three equal parts.

In the rest of the chapter we will discuss the situation when the data are
not enough to be divided in three sets. Even in this case there is no general
criterion which permits deciding when data are adequate to be splitted in
three sets. The adequate amount of data depends on the signal-to-noise ratio
of the function that we want to approximate and the model complexity that we
use for approximating the function. In this chapter we will describe methods
that allow to choose the best model, without using the validation step. These
models generally tries to estimate the optimal complexity. Finding the optimal
complexity for a model is an example of the heuristics called Occam’s razor,?
proposed by the philosopher of the Middle Ages, William of Occam. According
to the Occam’s razor we should give the preference to simpler models instead
of more complex ones. Therefore a model selection method should implement
a trade-off strategy between the preference towards the simpler models and
how much, expressed by the training error, we fit the data of the training
set. This strategy is implemented by the model selection methods with the
exception of crossvalidation, that we will describe in the chapter.

7.4 VC Dimension and Structural Risk Minimization

Statistical Learning Theory [3][22][23][24] provides a measure of the complex-
ity of the classifier, the so-called VC' dimension (or Vapnik-Chervonenkis di-
mension by the theory authors). In this section, following the approach of
[14], we provide an intuitive definition of VC dimension, whereas a formal
definition of VC dimension will be provided in the next section.

Consider a class of indicator functions C = {i(x, &)} where i(-) can assume
only two values {1,—1} and « is a parameter vector. The VC dimension
provides a method of measuring the complexity of the class of the function
above defined. Before the definition of the VC dimension we introduce the
following definitions.

Definition 12 A function separates perfectly a set of points if any point is
classified correctly.

Definition 13 A set of points is shattered by a class of functions C, inde-
pendently how the points are labeled, if an element of the class can perfectly
separate them.

Now we define the VC dimension.

2 Numguam ponenda sine necessitate (W. Occam).
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Definition 14 (VC dimension) The VC dimension of the class of func-
tions C is defined as the largest number of points that can be shattered by
elements of C.

The VC dimension is generally indicated by h and cannot exceed the number
of samples of the training set ¢. Figure 7.3 shows that the VC dimension of
the class of the linear function in R? is three. This result is generalized by the
following theorem:

Theorem 3 (Hyperplane VC Dimension) An hyperplane in n dimen-
sion has VC dimension equals to n + 1.

We observe that for the hyperplane, its VC dimension coincides with the
number of its free parameters. We remark that this does not generally happen
for the other classes of functions. Now, we wonder if it exists a class of functions
which has infinite VC dimension. The answer is provided by the following
result [24]:

Theorem 4 The class of the functions sin(az) has infinite VC dimension.

The figure 7.4 shows an example in which a set of points can be shattered by
the class of the function sin(ax) by choosing an appropriate value for . It is
possible to prove that any set point can be shattered by the sin(ax) selecting
a suitable a.

After having defined the VC dimension, we quote the following result [22],
for the binary classification, that put in connection the estimation error

Theorem 5 With probability 1 — n (with n > 0), the generalization error
Fiest 15 given by:
Etest - Etrain + Eest (717)

where Eirqin 15 the error on the training set and E.qs is given by:

1 20 4
Eegt = \/é (h <1n o+ 1) +In n) (7.18)

An analogous result, for the regression, is reported in [5].

Theorem 6 With probability 1 — n (with n > 0), the generalization error
E,.s in the regression is given by :
Etrain
EBiost = ——F—— 7.19

test (1 — C\ﬁ)_t,_ ( )
where Firqin s the error on the training set and € is given by:
h(log(agﬁ) +1) —log(%)

l

n=a (7.20)

with a1, as, ¢ € R.

3 f(-)4 stands for the positive part of f(:)
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(a) A line can shatter three points.

(b) Four points cannot be shattered by a line.

Fig. 7.3. Three points can be shattered by the class of the lines in the plane, whereas
four points cannot be shattered.
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Fig. 7.4. (a) The set of points cannot be separated by sin(az) using o = 6; (b) the
same data set can be separated using choosing o = 11.

Cherkassky and Mulier [5] suggest as typical values a1 = ag = ¢ = 1.

Now, we show how the VC dimension can be used for the model selec-
tion. The structural risk minimization (SRM), proposed by Vapnik [26][24],
is a model selection criterion based on the VC dimension. Structural Risk
Minimization consists in training a sequence of models of increasing VC di-
mensions hy < hg < -+ < hp—1 < hp < .... Then the model with smallest
generalization error (provided by the Theorem 5) is picked. Unfortunately the
bound on the generalization error provided by the theorem is very often too
loose. In addition, it is not always possible to compute the VC dimension of a
class of function. On the contrary, it can only compute an upper bound (often
loose) for the VC-dimension. Therefore structural risk minimization generally
results in a too imprecise criterion to be used as a model selection criterion.

7.5 Statistical Learning Theory*

In this section we review some fundamental issues of Statistical Learning the-
ory, also called Vapnik-Chervonenkis theory by the names of main contribu-
tors. The reading of this section can be omitted by readers not interested in
the theoretical issues of learning.

Statistical Learning theory provides a mathematical framework for the
learning problem. We assume that we have a data set
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D:{(leyl),"'a(xbyl)}GXXY (721)

whose samples are drawn according to an unknown underlying distribution
function P(x,y). The learning problem can be formalized in the following way.

Definition 15 (Learning Problem) Learning consists in minimizing the
expected loss, given by:

Mﬂ=/;ym%ﬂmmmxw (7.22)

where L(:) is a loss-function (see Chapter 5). In the case of classification
problem, a usual choice is to assume the zero-one loss as loss function.

The learning problem cannot be solved in a straight way. Since the prob-
ability density function is unknown, the integral in Equation (7.22) cannot
be computed. Therefore it is necessary an alternative strategy to solve the
learning problem. The strategy consists in replacing the expected risk with
the empirical risk, computed on D. Therefore we can define the following
principle:

Definition 16 Empirical Risk Minimization Principle (ERM) consists
in choosing the function f(-) that minimizes the empirical risk, given by:

emp

)4
Z (yi, f(x:) (7.23)

(\,\,_.

The ERM principle is theoretically sound, that is, consistent. The consistency
of ERM principle means that Renmp[f] — R[f] as the cardinality of the data
set approaches the infinity, that is £ — oo.

Now, we introduce a classical statistical inequality, the Chernoff’s bound
[6][8] that connects the empirical mean to the expected value of a variable.

Theorem 7 Let &1,...,& be samples of a random variable £. For any € > 0,
the following inequality, called Chernoff’s bound, holds:
1
p ( ;2 &£l
i=1
Using Chernoff’s bound [17], it can prove that the convergence of the empirical

risk to the expected risk is exponential, that is the following result holds (see
Problem 7.4):

> e> < 2exp(—24€?). (7.24)

Theorem 8 For any ¢ > 0,

P(Remplf] — RIF)l = €) < exp(~26e?). (7.25)
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7.5.1 Vapnik-Chervonenkis Theory

Now we summarize the main issues of the Vapnik-Chervonekis theory. We
restrict our attention to the binary classification problem.

Let D = {(x1,¥1),---,(X¢,y¢)} be a data set. Let F be the class of the
indicator functions, that is functions taking values in {—1, 1}, on D. We denote
with N(F, D) the cardinality of F restricted to x1, . .., Xy, namely the number
of different separations of the data x1,...,x, by means of functions of the set
F. Besides, we denote with N (F, £) the maximal number of separations can be
produced in this way. The function N (F,¢) is called the shattering coefficient.
Whenever the shattering coefficient is equal to 2¢, all possible separations can
be performed by F. In this case we say that F shatters ¢ patterns. It is
important to remark that ¢ patterns means that it ezists a set of £ patterns
that can be separated. It does not imply that each sets of ¢ patterns can be
separated.

Now we introduce three measures of capacity for the class F, i.e. the VC
entropy, the annealed entropy and the growth function. The entropy (or VC
entropy) is defined as follows:

Definition 17 The VC entropy of the class function F is defined by:
Hz(¢) = E[In N(F,D)] (7.26)

where the expectation E[-] is taken over D.

The following result [24] connects the entropy to the consistency of the ERM
principle:

Theorem 9 A sufficient condition for consistency of ERM principle is pro-
vided by
H
lim 270
{— 00 /

= 0. (7.27)

The above result represents the first milestone of VC theory [24]. Any machine
learning algorithm should satisfy (7.27).
The second measure of capacity is the annealed entropy.

Definition 18 The annealed entropy of the class function F is defined by:
HE"(0) =InE[N(F, D). (7.28)

where the expectation E[-] is taken over D.

The annealed entropy is an upper bound on the VC entropy [17] (see Problem
7.5). The following result (the former part is due to [24], the latter part is
due to [4]) connects the annealed entropy to the rate of convergence of the
empirical risk to the expected risk.
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Theorem 10 If the annealed entropy [24] satisfies

hm H]-‘ann ([)

Jim =T =0 (7.29)

then for any € > 0 the following equation holds:

P <S:up (RUf] — Remglf1] > ) < dexp (W - e2> L (130)
feF

Converserly [4], if condition (7.30) holds, then Equation (7.29) is fulfilled.

Equation (7.29) represents the second milestone of VC theory [24] which guar-
antees a fast rate of convergence.

Now we can obtain an upper bound of the annealed entropy if we replace
the expectation with the supremum over all possible samples. The new func-
tion is called growth function, that represents the third measure of capacity.

Definition 19 The growth function of the class function F is defined by:

Gz(¢) =lnsup N(F, D). (7.31)
D

We remark that the Vapnik-Chervonenkis’ approach results in an upper bound
on a set of classifiers and not a single classifier. Moreover, Vapnik and Chervo-
nenkis use a worst case approach, due to the presence of supremum in (7.31).
The following result [24] connects the growth function to the consistency of
the ERM principle.

Theorem 11 A necessary and a sufficient condition for consistency of ERM
principle 1s provided by

lim Z7)

im

£— 00 V4

= 0. (7.32)

Besides, if the condition (7.32) holds, then the rate of convergence is given
by (7.50).

Equation (7.32) represents the third milestone of VC theory [24]. This mile-
stone provides the necessary and sufficient condition that a learning algorithm
implementing the ERM principle must fulfill in order to guarantee a fast rate
of convergence independent of the problem that must be solved.

The following result [25] allows to define formally the VC dimension, that
has been introduced informally in the previous section.

Theorem 12 (VC Dimension’s Theorem) The growth function Gz({)
either satisfies the equality
Gr(l) =/{In2 (7.33)

or is given by:

In2 z‘fegh} (7:30)

=
Gf(f){<h(1+,§) if € >h
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where h, called Vapnik-Chervonenkis dimension (VC dimension), is
the largest integer for which

Gr(f) = hln2 (7.35)

If h does not exist, that is Gr(£) = £1n2, VC dimension is said to be infinite.

7.6 AIC and BIC Criteria

In this section we describe two crieria for model selection, i.e. Akaike infor-
mation criterion (AIC) [2] and Bayesian information criterion (BIC) [18].
These criteria are widely used when the number of the samples in the data
set is small, typically less than 1000, as it often happens, for instance, in
applications of time signal prediction or bioinformatics.

7.6.1 Akaike Information Criterion

The Akaike information criterion [2] can be used when the loss function of the
model is a log-likelihood function, as happens in the models whose training
is based on the maximum likelihood principle [9]. AIC consists of defining an
index, called AIC, and in picking the model with smallest AIC. Let {mq(x)}
be a class of models, where @ and x are, respectively, the parameter vector
that has to be tuned and x is the input vector. If we denote with Eypqi ()
and d(a), respectively, the error on the training set and the number of free
parameters for each model, the AIC index, which is function of «, is defined
as follows:

AIC(at) = Eirain(a) + 2@&2 (7.36)
where ¢ and 62 are, respectively, the number of samples of the training set
and an estimate of the variance of the noise in the data.

A reasonable choice, provided by [10], for 62 is:

~2 Etrain(a)

o = i) (7.37)

Plugging (7.37) in (7.36) we obtain the following expression, easy to compute,

for AIC:

d<a)Etrain(a)
L0 —d(a))

The AIC index provides an estimate of the generalization error and we can
use it for model selection. For this purpose, it is adequate to pick the model
with the smallest AIC index.

Finally, we quote that a special case of the Akaike information criterion is
the C, statistics. More details can be found in [10][14].

AIC (&) = Etrgin(a) + 2 (7.38)
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7.6.2 Bayesian Information Criterion

Bayesian Information Criterion (BIC), also called Schwartz criterion is sim-
ilar to AIC. It can be used when the loss function of the model is a log-
likelihood function. Likewise AIC, BIC defines an index, called BIC and picks
the model with smallest BIC. If we use the same formalism defined in the sec-
tion 7.6.1, the BIC index is defined as follows:

d
BIC(a) = Ejrain(a) + (M)%&? (7.39)
If we use for 62 the estimate given by (7.37), we obtain:
d(a)Etrain(a)
BI = Firai Infl) ———— 4
O(a) traln(a) + ( ne) 6(6 _ d(a)) (7 O)

It is immediate to see that BIC is proportional to AIC. It is adequate to
replace In/ with 2 in (7.39) to get AIC. Since €2 is ~ 7.4, we have that it is
reasonable that it is always In £ > 2. This implies that BIC penalizes complex
models more strongly than AIC. BIC chooses less complex models.

We conclude remarking that BIC can be motivated by a Bayesian ap-
proach to the problem of model selection. If we have a set of models § =
{M,...,M,,} and the respective model parameters {ay,...,a,,}. Our aim
is to select the best model from S. If we assume that we have a prior probabil-
ity P(a;|M;) for the parameters of each model M;, the posterior probability
P(M;|D), by the Bayes Theorem, is:

P(M;|D) o P(M;)P(D|M;) (7.41)

where D = {(x1,¥1),- .., (X¢,y¢) is the training set.

It can be shown [14] that selecting the model with the smallest BIC index
is equivalent to selecting the model with the largest posterior probability
P(M;|D).

Besides, if we compute the BIC index for each model M; and we denote
with 3; the BIC index of the model M;, it is possible to show that the posterior
probability P(M;|D) is given by:

iy = )
;exp (%)

Now, we compare BIC against AIC. Although it is not possible to assess in
general which criterion is the best for the model selection, some considerations
can be drawn. BIC is a consistent model selection criterion. This means that
the probability that BIC picks the correct model tends to 1 as £ — co. On the
contrary, AIC is not consistent since it selects models with too high complexity
as { — oo. Finally, we remark that when the training set is finite BIC is often
too parsimonious selecting model with too small complexity, due its large
penalty term.

(7.42)
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7.7 Minimum Description Length Approach

The minimum description length (MDL) [16] provides a model selection cri-
terion based on the theory of coding.

From the viewpoint of the theory of coding, we can regard each pattern x
of data set as a message that we want to encode and to transmit to a receiver.
We can view our model as a way of encoding the pattern. Therefore we will
select the model that produces the shortest code.

Let x1,X2,...,%¢ be the messages we want to send. The code uses a finite
alphabet of length A. For instance, we can use a binary code. We can decide
to encode our messages with a coding of variable length. In this case, if we
use the strategy of Huffman coding (see Chapter 3) we will encode the most
frequent messages with the shortest codes. Using Huffman coding the average
message length is shorter.

In general it holds the following Shannon’s theorem:

Theorem 13 If the messages X1,Xa, . ..,Xg are transmitted respectively with
probabilities P(x1), P(x2),...,P(x¢), the shortest coding uses code lengths
Ai = —logy P(x;) and the average message E(N) fulfills the following inequal-
ity:

E(\) > H. (7.43)

Where H, called entropy of the distribution P(x;), is given by:

4
H ==Y P(x;)logy(P(x)). (7.44)

i=1

Besides, the equation (7.43) becomes an equality when the probabilities P(x;)
are:

P(Xl) = A)\i
where A is the length of the alphabet.

We remark that when the set is infinite, the equation (7.44) has to be replaced
with

H= —/P(x) log, (P(x))dx. (7.45)
Therefore we can deduce the following corollary:

Corollary 1 In order to send a random variable x, with probability density
function P(x), —log, P(x) bits of information are required.

Finally, we can replace log,(P(x)) with In(P(x)). This implies the introduc-
tion of the multiplicative factor log, e that we can omit without mining the
correctness of our arguments.

That being said, we can return to the model selection. Given a model M
having a parameter vector o, we denote with D = {(x1,91),-.., (x¢,y¢)} the
training set. Let the conditional probability of the output be p(y|la, M, x).
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Besides, we assume that all inputs are known by the receiver. The message
length A required to send the outputs to the receiver is:

A =—Inp(yla, M,x) — Inp(a|M). (7.46)

The first term of (7.46) represents the average code length for sending the
difference between the model and the target values, whereas the second term
represents the average code length for sending the model parameter vector a.

The MDL principle implies that the model that has to be selected is the
one that minimizes (7.46). Equation (7.46) is the log-posterior distribution.
Therefore, minimizing description length implies maximizing posterior proba-
bility. Since the BIC criterion is derived by the maximization of log-posterior
probability, it is equivalent to MDL approach. BIC criterion can be considered
as a tool for model selection based on MDL approach.

7.8 Crossvalidation

Crossvalidation [12][15][20] is one of the most popular model selection meth-
ods. The basic idea of crossvalidation, also called more properly K-fold cross-
validation, consists in using part of the training set to train the model and
the remaining part of the training set to test the trained model. We pass to
describe K-fold crossvalidation in detail. Let ¢ be the number of samples of the
training set. We divide the training set into K subsets with the same number
of samples. Therefore each subset has approximately % samples. Then we
train the model using data from K — 1 subsets and test its performance on
the remaining subsets. We repeat the process for each of K possible choices of
the subset which is not used in the training. Then we compute the test error
averaging over all K error.

If we denote with Error;(f(x,a)) the error on i'* subset of the model
f(x, @), the test error CV () is given by:

K
CV(a) = % Z Errori(f(x, a)). (7.47)

The crossvalidation picks the model with the parameter o which minimizes
CV(a). Finally, the selected model is trained again on the whole data set.
Typical values for K is 5 or 10 [14]. The case K = ¢ is called leave-one-out
crossvalidation [21]. In this case the model is trained using all patterns with
the exception of one pattern.

7.8.1 Generalized Crossvalidation

For linear models that use the minimum square error as a loss function, leave-
one-out crossvalidation can be approximed by Generalized crossvalidation (or
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(e)

Fig. 7.5. Schematic representation of 5-fold crossvalidation. The data are divided
into five segments. The model is trained five times, each time using a data set in
which one of the subset (shown in black) is left out.

GCV) [7]. Let D = {(x1,91),-- -, (X¢,y¢) } be a dataset, where x € R™ and the
generic element y; is the target value for x;. Let Y = (y1,...,y¢) be the vector
whose components are the target values y;. Besides, we indicate with f(x;)
the output of a linear model M having as input the pattern x; and with
F = (f(xi),..., f(x¢)). If M is linear, it is possible to write the following

equation:
Y =SF (7.48)
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where S is an £ x £ matrix which depends on the input pattern x; but not on
the targets y;.
The GCV index is defined as follows:

é 2
1
Z Z [ t7ace(S) ] (749)

where trace(S) (with trace(S) < ¢) is the sum of the diagonal elements of S
and is called the effective number of parameters.

GCV can be preferred to leave-one-out crossvalidation when the trace(S)
can be computed easily. Finally, we conclude pointing out that other model
selection methods are based on effective number of parameters [24]. Among
them, we quote finite prediction error [1] and Shibata’s model selector [19].

7.9 Conclusion

In this chapter we have provided an overview of the main issues of statis-
tical learning and model selection theories. We have discussed the problem
of how to select the best one among a set of learning machines. Firstly, we
have discussed the bias-variance showing how it can describe the behavior of
a learning machine on the basis of simple statistical considerations. Then we
have introduced the concept of the complexity of a learning machine present-
ing both intuitively and formally the most popular measure of complexity of
a classifier that is the VC dimension. We have introduced the ERM principle
and reviewed the main results of the Vapnik-Chervonenkis theory of learn-
ing, underlining the conditions that a learning machine has to fulfill in order
to guarantee the consistency and the fast convergence of the ERM principle.
The rest of the chapter has been devoted to review the most popular model
selection methods that is BIC, AIC and crossvalidation. We have also briefly
reviewed the minimal description length approach to the model selectio un-
derlining its equivalence to the BIC criterion.

We conclude the chapter providing some bibliographical remarks. Bias-
variance decomposition is fully discussed in [9]. A comprehensive survey of the
Vapnik-Chervonenkis theory can be found in [17][22][23][24]. Model Selection
methods are described in detail in [14].

Problems

7.1. Prove that the average error, in the case of regression, £[(f(x,D) —
F(x))?] can be decomposed in the following way:

E[(f(x,D) = F(x))*] = (£[f(x,D) = Fx)))* + £[(f(x, D) — £[f (x, D)})?]
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7.2. Consider the bias-variance decomposition for classification. Show that if
the classification error P(f(x,D = y) does not coincide with Bayes discrimi-
nant error, it is given by:

P(f(x,D =y) = [2v(x) = 1| + P(p(x) = y).

7.3. Prove that the class of functions sin(az) (o € R) has infinite VC di-
mension (Theorem 4). You can compare your proof with the one reported
in [24].

7.4. For any € > 0, prove that
P(|Remplf] = RIf]] = €) < exp(—2Le?) (7.50)

7.5. Prove that the annealed entropy is an upper bound of VC Entropy. Hint:
use Jensen’s inequality [24] which states that for a concave function v the
inequality

[vewiarw < v ( [ oware)
holds.

7.6. Prove that if a class of function F can shatter any data set of ¢ samples
the third milestione of VC theory is not fulfilled, that is the condition (7.32)
does not hold.

7.7. Implement the AIC criterion. Consider spam data that can be dowloaded
by ftp.ics.uci.edu/pub/machine-learning-databases/spam. Divide randomly
spam data in two subsets with the same number of samples. Take the for-
mer and the latter sets respectively as the training and the test set. Select
a learning algorithm for classification (e.g. K-Means or MLP) and train the
algorithm with several parameter values. Use the AIC criterion for model
selection. Compare their performances by means of the model assessment.

7.8. Implement the BIC criterion. Repeat Problem 7.7 and use the crossvali-
dation for model selection. Compare its performance with AIC.

7.9. Implement the crossvalidation criterion. Repeat Problem 7.7 and use 5-
fold crossvalidation for model selection. Compare its performance with AIC
and BIC.

7.10. Implement the leave-one-out method and test it on Iris Data [11] which
can be dowloaded by ftp.ics.uci.edu/pub/machine-learning-databases/iris.
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8

Supervised Neural Networks
and Ensemble Methods

What the reader should know to understand this chapter

e Fundamentals of machine learning (Chapter 4).
e Statistics (Appendix A).

What the reader should know after reading in this chapter

Multilayer neural networks.

Learning vector quantization.
Classification and regression methods.
Ensemble methods.

8.1 Introduction

In supervised learning, the data is a set D whose elements are input-output
patterns, i.e.
D:{(Xlayl)7"'7(xé7y€)}ERde (81)

and the learning problem can be thought as finding a function f : R? — Y
that maps the vectors x into the elements of ). If the set ) is discrete, i.e.
Y ={Cy,...,Ck} the learning problem is called classification. An example of
this learning task is the recognition of handwritten digits or a speaker. Such
a task is performed with algorithms called classifiers (see Chapter 5).

If the set ) is continuous, i.e. Y C R, the problem is called regression.
Example of this learning task is the prediction of stock indexes. Such a task
is performed with algorithms called regressors.

This chapter presents some learning algorithms that have the peculiarity
of being supervised (see Chapter 5), i.e. of being capable to learn from a
set of input-output examples D called training set. In particular, this chapter
focuses on three kinds of algorithms: artificial neural networks, learning vector
quantization, and the ensemble methods.
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The artificial neural networks implement a computational paradigm in-
spired by the anatomy of the brain. The corresponding algorithms simulate
simple processing units (the so-called neurons) linked through a complex web
of connections. This enables the networks to process separately different pieces
of information while keeping into account their mutual constraints and rela-
tionships. The learning vector quantization is a supervised prototype-based
classifier. Several clustering methods presented in Chapter 6, e.g. K-Means
and SOM, can be viewed as prototype-based classifiers, when they are used in
the classification task. However thanks to the information of the membership
(or non-membership) of a pattern to a given class, LVQ outperforms unsuper-
vised prototype-based classifiers. The ensemble methods are techniques that
combine the output of a set of individually trained learning algorithms f;(x)
in order to obtain a performance higher that the performance of any single
fi(x).

The rest of this chapter is organized as follows: Section 8.2 presents the
general aspects of artificial neural networks, Sections 8.3 and 8.4 present ar-
tificial neurons and connections respectively, Section 8.5 shows single layer
neural networks, while Sections 8.6 and 8.7 present multiple layer networks
and their training algorithms respectively. In the last part of the chapter, Sec-
tion 8.8 describes the learning vector quantization and Section 8.9 presents
the Ensemble methods; finally some bibliographical remarks are provided in
Section 8.10.

8.2 Artificial Neural Networks and Neural Computation

Consider an everyday action as simple as grabbing an object on a desk. Its
execution involves the simultaneous processing of many pieces of information:
the position of the object on the desk, the presence of obstacles, the identi-
fication of the object in the visual field, an approximate prediction of object
weight and distance, etc. Each information piece can be partial or ambiguous,
but still it can have a non negligible impact on the outcome of the overall
process. Moreover, the single pieces of information cannot be processed sepa-
rately, but must be considered as elements of a complex web of relationships.
This means that the meaning and the role of the same information piece can
change significantly depending on the connections with other information at
hand [28]. The solution adopted by the nature for such a problem can be
observed in the structure of the brain. In very simple terms (for a more rigor-
ous description see [34]), the brain is composed of a large number of neurons,
~ 10" in the case of humans, connected with each other through an even
larger number of synapses, which is ~ 10'* in the case of humans. These
carry signals, mainly in the form of electric or chemical stimulations, that
are distributed to different neurons and separately elaborated by each one of
them. The result of such a process is a collective behavior pattern enabling
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the brain to perform all kinds of complex tasks, including the reading of this
text.

The above description is the basis of a paradigm referred to as neural
computation [18][20], Parallel Distributed Processing [42], neurocomputing [19]
or connectionism [31] which aims at carrying out computational tasks by using
a large number of simple interconnected processing units called neurons or
nodes. These can be implemented through software simulations or hardware
circuits and perform relatively simple calculations. The resulting machines are
called artificial neural networks (ANN) and have an important characteristic:
the connections between neurons are associated with parameters called weights
that can be modified, through a training process, in order to associate a desired
output to a given input. In other words, the ANNs can learn from input-output
examples how to associate the correct output to previously unseen input data,
and this is useful in the context of classification and regression problems.

The neural networks have some important advantages with respect to other
approaches [18][27][28]:

e Nonlinearity. When the neurons process the data with nonlinear functions,
the networks as a whole are nonlinear. This is especially suitable when the
mechanisms generating the data are inherently nonlinear.

o Input output mapping. The networks learn by adapting their parameters
in order to map labeled input vectors x; to desired outputs t;, which are
often called targets. This means that no assumption is made about the
distribution of the data and the networks can perform non-parametric
statistical inference.

e Adaptivity. The training process does not depend on the data. The learning
properties are inherent to the networks and the same network can be
trained to perform different tasks by simply using different data in the
training. Nothing must be changed in the network to do so.

o Contextual information. Each neuron is affected by any other neuron, then
contextual information is naturally used in the computation.

The next sections show in more detail the elements outlined above. In partic-
ular, after a description of neurons and connections, the chapter shows that
the linear discriminant functions (see Chapter 5) can be thought of as neural
networks and presents the most important example of ANN, i.e. the multilayer
perceptron.

8.3 Artificial Neurons

The most general form of artificial neuron is depicted in Figure 8.1. Each
neuron ¢ in a network receives several inputs passing through connections
characterized by weights w;;, (represented as circles in the figure). Each input
value is multiplied by the weight of the connection it passes through and it
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Fig. 8.1. Artificial neurons. This figure shows the most general form of artificial
neurons. The inputs, multiplied by the connection weights, pass through a summin
junction and the result is given as input to an activation function that gives the
neuron output.

is conveyed to a junction (denoted with X' in the figure) where all inputs are
summed. A further term, called bias is added to the sum and the result is:

N
U; = Zwikl’i +b;=w; - x+0b; (82)
k=1

where w; is the vector having as components the weights of the connections

ending in neuron ¢ and x is the vector of the inputs of the same neuron. Note
that the input is higher than zero when wx > —b; and this explains the role
of the bias. In fact, the functions which determine the output of the neurons
(see below) mimic a more or less abrupt transition from quiet to activity in
correspondence of u; = 0. The opposite of the bias can then be thought of as
a threshold to be reached for activation.

The value u; is given as input to an activation function g(u;) which pro-
vides the output y; of the neuron. The name activation function comes from
an analogy with real neurons. In the brain, neurons behave roughly as electric
condensers: they accumulate potential by receiving electric charges from their
synapses and then discharge when the potential exceeds a threshold. The ac-
tivation functions (see below for more details) mimic such a behaviour using
both linear and nonlinear and nonlinear functions that are zero or close to
zero up to a certain u; value (conventionally fixed at u; = 0) and then grow
more or less quickly to 1. If all activation functions in a neural network are
linear, the network as a whole is a linear function. On the other hand, even
if only part of the network neurons have a nonlinear activation function, the
network as a whole is nonlinear.
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Fig. 8.2. Activation functions. The plots show different activation functions com-
monly applied in neural networks. From top to bottom the functions are step, piece-

wise linear, sigmoid, and hyperbolic tangent.

The most common activation functions are the step function (or Heaviside
function or threshold function), the piecewise linear function, the logistic sig-
moid and the hyperbolic tangent (see Figure 8.2). All functions have the same
basic behavior, but they have different properties that have an impact not only
on the final results, but also on the training algorithms (see Section 8.7.3).
The single functions are described more in detail in the following.

The step function I(u) is defined as follows:

0 foru<O
I(u)_{lforu>0

(8.3)
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and it is shown in the upper plot of Figure 8.2. Such an activation function
was proposed in the earliest works on neuron models [29] and processing nodes
such that g(u) = I(u) are sometimes referred to as McCulloch-Pitts neurons
from the name of the model proposers.

A smoother version of the step function is the piecewise linear function

defined as follows:
0 foru<

L{u)=1Q u+3 for 3 <
1 foru >

< (8.4)

= S =
N[—=

(see second plot from above in Figure 8.2). In this case, the transition is less
abrubpt and enables a gradual transition towards the activation.

The first two functions are simple, but are not continuous and this creates
some problems for the training algorithms, then other functions have been
proposed that have a similar shape, but are continuous. The first one is the
logistic sigmoid: .
14 e Au
where X is called slope parameter. The higher A, the steeper the transition
from zero to one (see third plot from above in Figure 8.2). One of the main
advantages of the sigmoid function is that it can be interpreted as a probability
and this is often helpful in interpreting the output of a neural network (see
Section 8.5.2).

The last function presented here is the hyperbolic tangent:

o(u) (8.5)

eM — e~

e)\u + ef/\u

Au
Y (u) = tanh(u) = (8.6)
which is shown in the lowest plot of Figure 8.2. An important difference with
respect to the other functions is that the hyperbolic tangent takes values in
the interval [—1,1] rather than in the interval [0, 1]. The functions o(u) and
Y(u) are related through a linear transform:

(@) = 20(u) — 1 (8.7)

where & = u/2. A neural networks having logistic sigmoids as activation
functions is equivalent to a neural network having hyperbolic tangents as
activation functions, but different values for weights and biases. The networks
using the hyperbolic tangent are empirically found to converge faster than
those using the logistic sigmoid [1].

The neurons are the first important element of a network, but they are
not effective if they are not connected with each other. The connections play
not only the role of channels through which the information flows, but they
define also the architecture of the network. The next section shows in more
detail how this happens.



8.4 Connections and Network Architectures 179

8.4 Connections and Network Architectures

Section 8.2 shows that the neural computation paradigm addresses the prob-
lem of processing a large amount of information pieces related to each other
through contextual constraints. The neurons are the solution proposed for the
first part of the problem, i.e. the handling of multiple and localized informa-
tion elements. In fact, it is possible to feed each neuron with a single piece of
information and to have a number sufficiently large of neurons to process the
whole information at hand. On the other hand, since neurons focus on single
and localized pieces of information, they cannot account for the relationships
with the other information pieces and such a problem is rather addressed by
the other important element of the neural networks, i.e. the connections.

The connections include two main aspects: the first is the architecture
of the network, i.e. the fact that by connecting certain neurons rather than
others the networks assume different structures. The second is the value of
the weights associated to each connection. In principle, each neuron can be
connected to any other neuron, but this book will focus on the so-called
feed-forward networks, i.e. to networks where there are no feed-back loops.
This means that the neurons can be grouped into disjoint sets .S;, where
i € (1,...,95), such that all neurons belonging to set S; receive inputs only
from the neurons of set .S;_; and send their output only to the neurons of set
Si+1.

Figure 8.3 shows the multilayer perceptron, probably the most important
example of feed-forward neural network. The figure clearly shows that there
are three sets of neurons with the above outlined property. The neurons of
the first set are called input nodes and, in general, they do not perform any
kind of processing, i.e. their outputs simply correspond to a component of the
input vector x = (x1,...,xs) € R% On the contrary, the neurons of the other
two sets, called hidden and output nodes, process their input as described in
Section 8.3. The sets of neurons identified following the above approach are
often called layers. The name hidden denotes the layers which are neither input
nor output. A network can have more than one hidden layers. The network
of the figure has three layers since it has only one hidden layer. However,
other naming conventions propose to consider the connections rather than
the neurons as elements of the layers, then the network of the figure would
have only two layers. The reason behind such a choice is that what actually
characterizes the network are the connections and not the nodes (see below for
more details) and this book will adopt for this reason the second convention.
When all neurons of set .S; are connected to all neurons of set S; 11, the network
is said fully connected.

The second important aspect of the connections is the value of the weights
associated to them. The connection between neurons ¢ and k is typically de-
noted with wy,;, meaning that the connection carries the output of neuron
¢ into neuron k and the whole set of weights and biases (see Section 8.3)
is typically denoted with w and called parameters set. The value of weights
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Fig. 8.3. Multilayer perceptron. The picture shows a fully connected multilayer
perceptron.

and biases is determined through a supervised learning process aimed at find-
ing the parameters set w satisfying some predefined criterion. The value of
weights and biases can then be thought of as the form under which is stored
the knowledge acquired during the training [18][40].

Such an aspect is particularly important because a network with given ar-
chitecture and activation functions can be trained to perform different tasks.
In fact, it is sufficient to train the network with different data and the weights
will assume the values that better correspond to each task. The connec-
tions determine the relationships between the different pieces of information
processed by single neurons. Negative weights determine inhibitory effects of
one piece of information onto another one, while positive weights correspond
to excitatory effects.

So far, we have described the neural networks in intuitive terms using
the similarity with the brain and giving a high level sketch of the way they
work. The next sections show how the intuitive concepts outlined so far are
translated into mathematical terms and how neural networks can be used to
take decisions about the data and solve supervised problems.

8.5 Single-Layer Networks

This section shows how linear discriminant functions (LDF) [33] (see Chapter
5), a simple approach for the classification problem, can be interpreted as
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single layer networks, i.e. neural networks with a single layer of connections
(see Section 8.4 for the naming convention). Attention will be mainly paid to
the way networks can perform classification tasks, for a rigorous and complete
description of LDF's the reader can refer to most of the machine learning books
(see e.g. [33]).

The rest of this section shows in particular that the neuron model pre-
sented above corresponds to a binary LDF (Section 8.5.1), that the logistic
sigmoid function estimates a-posteriori class probabilities (Section 8.5.2), and
that single layer networks can account only for linear separation surfaces be-
tween classes (Section 8.5.3).

8.5.1 Linear Discriminant Functions and Single-Layer Networks

Consider the problem of the binary classification, i.e. of the assignment of
an input vector x to one of two predefined classes C; and Cs. Among other
techniques (see Chapter 5 for Bayesian approaches), it is possible to use a
discriminant function y(x) with the following property:

y(x)>0if xeCy

y(x) < 0if x € Cs. (8:8)

The LDF if the simplest function of such kind and, in its most general form,
is written as follows:
y(x) = g(w - x +wy), (8.9)

where w is a parameters vector of the same dimension d as x, wg is a parameter
called bias or threshold, and ¢(.), in the most simple case, is the identity
function:

y(x) = w - x + wp. (8.10)

The set of the points where y(x) = 0 is called separation surface because it
separates the regions corresponding to the two classes. If two points x; and
X5 belong to the separation surface, then w - x1 + wg = w - X3 + wq and:

w(x; —x2) =0, (8.11)

i.e. the parameters vector w is orthogonal to the separation surface. Since
w is constant, the separation surface must be a hyperplane, hence the name
Linear Discriminant Function. Equation (8.10) corresponds to the network in
Figure 8.4 (a) when g¢(.) is the identity, in fact it can be rewritten as:

d
y(x) = Z Wi 4 Wo, (8.12)
i=1

i.e. the input of a neuron as proposed in Equation (8.2) if we interpret wy as
the bias.
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Fig. 8.4. Linear discriminant functions. The left network corrisponds to a binary
classifier of the kind described in Equation 8.9. The dark neuron corresponds to an
extra input (xg = 1) which enables one to account for the threshold wig. The right
network corresponds to the multiclass case.

Consider now the case where the number of classes is K. The problem
can be addressed by using K binary classifiers y;(x) capable of discriminating
between vectors belonging to C; and vectors not belonging to C;:

yi(x) >0if x €C;

yi(x) < 0if x ¢ C;. (8.13)
The class of an input vector x can then be identified as follows:
d
k = arg max y;(x) = arg max Z w1z + Wwio. (8.14)

=1

This corresponds to the network depicted in Figure 8.4 (b) when the weights
wio, L € (1,..., K), are set to one. The single layer networks are then capable
of performing classification tasks, although they are affected by the same lim-
itations as the LDFs, i.e. they can account only for linear separation surfaces.
The problem of training such a network is addressed in Section 8.7. Note that
this technique does not make any assumption about the distribution of the
data, then it belongs to the family of non-parametric methods.

8.5.2 Linear Discriminants and the Logistic Sigmoid

This section considers the case where the probabilities p(x|Cy) are Gaussians:

—71 exr fle Ty1(x—
p(x[Cy) = TREDE P =5 =) T (x — pi) (8.15)
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and the covariance matrices of different classes are equal. In the case of the
binary classification, by the Bayes theorem:

p(x/C1)p(C1) 1

p(Ci]x) = p(x|CP(C1) + p(x|C2)p(C2) — 1 +exp(—u) g(w) (8.16)
where .
= Ip |PXPPA)

- [p(XICQ)p(CQ)} (8.17)

and g(u) is nothing else than the logistic sigmoid introduced in Section 8.3.
If we pose u = wx + wp, then g(u) corresponds to Equation (8.9) and:

w=S""( — p) (8.18)

1 1 C
wo =~ ¥+ Spuz ¥ s +n igcg-
This corresponds to a network like the one depicted in Figure 8.4 (a) where the
activation function is a logistic sigmoid. The multiclass case can be obtained
by simply considering, like in the previous section, several binary classifiers.
The above has two main consequences: the first is that the parameters w
and wg can be estimated with averages and covariances of the training data,
then we have a technique to train a linear discriminant classifier and the cor-
responding neural network. The second is that the output of the nodes where
the activation function is a logistic sigmoid can be thought of as a-posteriori
probabilities of different classes. This is important because it enables one to
interpret the networks output and to include it in probabilistic frameworks.

(8.19)

8.5.3 Generalized Linear Discriminants and the Perceptron

The main limit of the linear discriminant functions of Equation (8.9), and of
the corresponding networks, is that they account for a narrow class of possible
discriminant functions which, in many cases, are not the optimal choice. In
fact, Section 8.5.1 shows that the separation surfaces implicitly identified by
single layer networks are hyperplanes, then the LDFs are effective only in
problems where different classes can be actually separated by linear surfaces.
An example often presented in the literature [32] where single layer networks
fail in separating two classes is the so-called XOR problem shown in Figure 8.5
(a). In this case, no linear surface can separate the samples belonging to the
two classes. On the other hand, the linear separation surface is optimal (in the
sense of the error rate minimization) in the case of two partially overlapping
classes following Gaussian distributions as shown in Figure 8.5 (b). Since they
are simple and quick to train, the single layer networks can then represent a
good baseline and a benchmark for comparison with more complex algorithms.

The spectrum of possible decision boundaries of linear networks can be
made wider by using the generalized linear discriminants:
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Fig. 8.5. Effectiveness of linear separation surfaces. The left picture shows the
XOR problem. No linear decision boundary surface is capable of separating the two
classes. On the other hand, a linear surface separating two Gaussian distributions
minimizes the error rate in attributing each test sample to the correct distribution.

d
Yr(x) = Zwkz¢l (x) + wio (8.20)
=1

where the ¢;(x) are called basis functions and must be chosen appropriately
for the problem at hand. As an example, consider the case where d = 1 and
the data are then real numbers:

Y (x) = wr1d1(z) + wro, (8.21)

and pose ¢1(x) = a’ + bz + cx?. The equation yx(z) > 0 corresponds then to
the following expression:
a+bx+cx? >0 (8.22)

where a = a’ + wyo/wy1. Consider the case where A = b? — 4ac > 0 then the
above equation has two distinct real solutions x; and x5, where x; < o, and
it can be rewritten as follows:

(x —x1)(x —22) >0 (8.23)

which is satisfied in the intervals x < x1 and z > x5. Such a separation surface
could not be obtained with simple linear discriminant functions because these
can lead only to regions of the form = < xg, then can only split the real axis
in two parts rather than in three like the generalized function of Equation
(8.21). The geometric interpretation of this problem is shown in Figure 8.6:
the function ¢;(x) maps the points of the real axis onto a parabola in the
space (z,¢1(x)) and, in such a space, a linear separation surface splits the
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Generalized discriminant functions

Separation surface in (x,0(x)) space

Fig. 8.6. Generalized linear functions. The picture shows how the function ¢(x)
maps the data points into a parabola in the space (z,¢(z)). A linear separation
surface in such a space induces a non linear separation surface capable of identifying
regions R; and R» in the original data space z.

data into three intervals corresponding to x < x1, 1 < x < x5 and x > z5. In
more general terms, the basis functions represent the data in a space where a
linear surface separation corresponds to a more complex surface in the original
data space.

One of the earliest examples of single layer networks (if not the earliest one)
was based on the generalized discriminat functions approach. The network
was called perceptron [39] and it was composed of a single processing unit
with step activation function (see Section 8.2). At the same time, similar
networks called Adalines (standing for ADAptive LINear Element) [47] were
independently investigated. The perceptron was applied to the problem of
recognizing characters and the input data were random pixels extracted from
the character images. Since the performance of a single processing unit was
too low, the input data were passed through processing elements ¢; weighted
with adaptable coefficients. The result was the following function:

M
y=g (Z w; i (X) + wo) (8.24)

which actually corresponds to a generalized discriminant function given as
input to a step function. The limits of the perceptron in addressing problems
where linear decision boundaries are not effective stopped the interest in neural
networks for around two decades (roughly from the mid sixties to the mid
eighties). The availability of computers capable of dealing with more complex
network architectures finally made it possible to overcome the perceptron
limits by using multilayer neural networks.
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8.6 Multilayer Networks

This section presents neural networks with more than one layer of connections
and, more in particular, the so-called Multilayer Perceptron (MLP), a neural
network that will be shown to have important properties. Although MLP can
have an arbitrary number of hidden layers it has been proven!, independently
by [9] and [21], that it is adequate one hidden layer for guaranteeing that MLP
has universal approzimation property (or best approzimation property), i.e. it
can approximate arbitrarily well any functional continuous mapping between
spaces of finite dimension, provided that the number of hidden neurons (see
Figure 8.3) is sufficiently large. In the context of the classification problem,
this means that, implicitly, the MLPs can approximate arbitrarily well any
decision boundary. This overcomes the main limit of single layer networks that
can lead only to linear separation surfaces? and explains why in classification
and regression tasks no major attention is paid to MLP with more than one
hidden layer. This is true only for these tasks but not in general. If we use
MLP for feature extraction, e.g. for extracting nonlinear components, three
hidden layers are required (see Chapter 11). In the rest of this section we
assume that MLP has one hidden layer, i.e. two weights layers and we will
show how to train an MLP, i.e. how to find the weights satisfying a predefined
criterion over a training set of labeled examples. Section 8.7.4 describes a
package enabling one to easily implement, train and test Multilayer networks.

8.6.1 The Multilayer Perceptron

The MLP is a feed-forward fully connected network and the corresponding
function can be found by simply following the flow of information along the
different layers. If the input vectors x are d-dimensional, then the network
must have d+ 1 input neurons. The input of the extra neuron is always 1 and
the weights connecting the extra neuron to the hidden nodes are the biases of
these last. The input of the generic node j in the hidden layer is then:

d d
a; = ijla:l + wjoxo = Zwﬂml (8.25)
1=1 1=0
where x = (21, ...,24) is the input vector, xg is the input of the extra neuron

and it is set to 1, wjo is the bias of hidden node j, and wj; (I = 1,...,d)
are the weights of the connections between the input nodes and the hidden
node j.

! The result can be obtained using the Stone-Weierstrass theorem [21] or the Hahn-
Banach theorem [9].

2 The generalized linear discriminant functions can actually lead to nonlinear sur-
faces, but still they cannot approximate any possible decision boundary. See Sec-
tion 8.5 for more details.
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The output z; of the 4" hidden node can be obtained by simply applying
the activation function g(.) of the hidden nodes:

d
zj =g (Z wjm> , (8.26)
1=0

where j =d+2,...,d+ 1+ H (H is the number of hidden nodes), and z441
is set to 1 because neuron d+ 1 is used to account for the output layer biases.
In the same way it is possible to show that the output y; of output node k is:

d+1+H d+1+H d
Ye =49 < Z wkﬂl) =g Z Wi g (Z wjm> (8.27)
=0

I=d+1 j=d+1

where k=d+ H+1,...,d+ H+ O (O is the number of output nodes). Note
that when g¢(.) is the identity function, the last equation corresponds to the
expression of the generalized linear discriminant functions (see Section 8.9).

In general, the activation function of the hidden nodes is nonlinear. The
reason is that networks where the hidden nodes have linear activation function
are equivalent to networks without hidden nodes [1]. In other words, multilayer
networks where the hidden nodes have linear activation function have the same
limits as single layer networks (see Section 8.5) and do not have the important
properties (see below) of multilayer networks. Linear activation functions in
the hidden nodes lead to interesting results only for auto-associative networks,
i.e. networks where the target is the input and the number of the hidden neu-
rons is lower than the input dimensionality (H < d). In this case, the output
of the hidden layer corresponds to a transform of the hidden data known
as principal component analysis (PCA) which reduces the dimensionality of
the data while preserving most of the information they contain (see [2] and
Chapter 11 for more details).

When the activation functions are sigmoidal (i.e. logistic sigmoid or hyper-
bolic tangent) for both hidden and output nodes, then the resulting networks
can approximate arbitrarly well any functional continuous mapping from one
finite-dimensional space to another if the number of hidden neurons H is
sufficiently large [9]. This results has the important consequence that, in a
classification context, any decision boundary surface can be arbitarily well
approximated with an MLP. In other words, while single layer networks lead
to a limited range of separation surfaces, multilayer networks can lead to any
separation surface. Another important consequence is that when the activa-
tion function neurons is a logistic sigmoid, then the MLP can approximate
arbitrarily well the a-posteriori probability p(C|x) of a class C (see Section 8.5.2
for more details).

In order for an MLP to approximate a specific mapping, it is necessary to
find the parameter set (i.e. the values of weights and biases) that correspond
to such a mapping. This can be done through a training procedure where the
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network adapts the parameters based on a set of labeled examples, i.e. pairs
(X, yx) including an input vector xj, and the desired output (the so-called
target) yi. The training algorithm for the MLP’s is called back-propagation
and it is the subject of the next section.

8.7 Multilayer Networks Training

As in the cases presented so far in previous chapters, the training procedure is
based on the minimization of an error function, or empirical risk (see Chapter
5), with respect to the parameter set of the algorithm under examination.
In the case of MLPs, the parameter set w contains connection weights and
neuron biases. The error function is a differentiable function of the network
outputs y; and these are a function of the network parameters as shown in
Equation (8.28), then the error function can be derived with respect to any
single parameter in w. This enables to minimize the error function by applying
different optimization algorithms such as gradient descent. The name error
back-propagation comes from the fact that the derivation propagates the error
from the output nodes to the input nodes [40] (see below for more details).

In general the training algorithms are iterative and each iteration involves
two steps that can be considered separately:

e Fwaluation of error function derivatives. The expression error back-
propagation actually refers to this step, although it is used sometimes
to define the whole training process. This stage depends on the particular
network under examination because the functional expression correspond-
ing to the network, Equation (8.28) in the case of MLP, changes for each
architecture.

e Parameters update. This stage modifies the network parameters with the
goal of minimizing the error function. This stage is independent of the
particular network used. In fact, once the derivatives are at disposition,
the minimization techniques do not depend any more on the particular
network or architecture used.

In the following the two steps are described in more detail.

8.7.1 Error Back-Propagation for Feed-Forwards Networks*

Since the training is supervised, we have a training set which is a collection
of input-output patterns, i.e. D = {(x1,t1),...,%¢s,ts) € R x Y. In the re-
gression problem ) is continuous i.e. Y C RO. In the classification problem )
is discrete, i.e. Y = (C1,...,Co). This representation of the output Y is not
suitable to be used in a MLP. A more appropriate approach consists in repre-
senting ) as a discrete subset of R?, i.e. J = {+1,-1}9, where the discrete
values +1 and —1 corresponds to the membership and the non-membership
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to a given class, respectively. Therefore if the m-th component of the target
¥ is +1 then the respective pattern § belongs to the class Cp,.

Being said that, the functional form corresponding to a feed-forward net-
work network is:

d+1+H d
Y =9 Z Wk;g <Z wjﬂl) ; (8.28)
1=0

j=d+1

see Equation (8.28), where the biases are included in the summations through
extra nodes with input fixed to 1 and do not need to be distinguished from
connection weights. The error function has typically the following form:

4
E=> e (8.29)
n=1

where ¢, is the error, i.e. the loss function (see Chapter 5), of the network
over the n'” sample of the training set D. The derivative of E with respect to
any parameter w;; can then be expressed as:

OE <~ ey
Bwij o 1 8’[1)1']' (830)

and in the following we can focus on a single Je/Ow;; (the index n is omitted
whenever possible).

The derivative of € with respect to a weight of the first layer can be
obtained as follows:

Oe Oe Oa;

8wij - aai 8wij

(8.31)

where a; is the input of node 7 in the hidden layer, i =d+1,...,d+ 1+ H
and j =0,...,d. The first term of the above product is called error and it is
denoted with d;:

_ Oe
N 80,1‘ '

0 (8.32)
Since a; = sz:o wyxy, the second term of the same product is simply x;. As
a result, the derivative of € with respect to a weight in the first layer can be
written as follows:

= (5Z‘SL‘J‘. (833)

Using the same approach, the derivative of € with respect to a weight wy; in
the second layer, i.e. k =d+H+1,...,d+ H+Oandl =d+1,...,d+1+H,
can be written as:

= 02y .34
awkl k2l (8 3 )

where



190 8 Supervised Neural Networks and Ensemble Methods

Oe
O = oo (8.35)

The expression of the errors J; is different for hidden and output nodes.
The input nodes are not considered because their activation function is the
identity. For the output nodes the error J; is:

O Oe Oy; () Oe

(8.36)

where ¢'(z) is simply the first derivative of the activation function of the
output nodes g(z).

For the hidden nodes we have to take into account the fact that they are
connected to all of the output nodes, then it is necessary to sum over all of

these:
e 0z 0z
k 6ak Z 8zl 8ak n zl: 51 8ak (8’37)

where the expression §; corresponds to Equation (8.36) because the sum is
made over the output neurons. The last missing element is then 0z;/9day
which corresponds to the following expression:

021 0 .. -,
B = Fa ;g(az)wh = §'(ar)wig. (8.38)

By plugging the last expression into Equation (8.37), the result for the hidden
nodes errors is:
© Oe
S =7 (ar) > wlkg/(zl)@- (8.39)
1=1
The above results enable one to write the derivative of €, with respect to
any network parameter by simply plugging the expression of the activation
functions g(z) and g(a) as well as of the loss €,. The derivative of FE can then
be obtained by simply summing over the errors of all the training set samples.

8.7.2 Parameter Update: The Error Surface

The problem of updating the parameters can be thought as the problem of
minimizing an error function F(w), where w is the vector containing all net-
work parameters. The minimization of continuous and differentiable functions
of many parameters has been widely studied in the literature and most of the
results of such a domain can be applied to the training of neural networks.
This section focuses on one of the simplest, but still effective techniques, i.e.
gradient descent. The reader interested in other methods can find extensive
surveys in [1] and, at a tutorial level, in [22].

The error function F(w) defines a surface, error surface, in the parameters
space and the goal of the training is to find a point where VE = 0 (see
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Fig. 8.7. Error surface. The error function defines an error surface in the space of
the parameters. The goal of the training is to find a minimum of the error surface.
Although there is no guarantee that the training leads to the global minimum, the
performance in correspondence of local minima is, most of the times, satisfactory.

Figure 8.7). There are several points for which such a property holds. One of
them, the so-called global minimum, is the point where the error function takes
the smallest value. Others are points, called local minima, where E is lower
than in the surrounding region but higher than in other regions. Finally, some
points where VE = 0 are maxima (local or global) and must be avoided during
the training. Due to the high number of parameters, the error surface cannot
be explored exhaustively. In general, the training algorithms initialize the
parameters with random values w(®) and then update them through iterative
procedures. At each iteration, the weights are updated as follows:

w(iD) — w® L Aw® (8.40)

and different training algorithms correspond to different choices for the update
term Aw( (the subscript i stands for the iteration index). Some algorithms
guarantee that E(w(tD) < E(w®), but this still does not guarantee that
the error decreases at each iteration. In fact, if the error function falls into a
local minimum, there is no way to leave it for a lower local minimum and the
algorithm get stuck. Moreover, if w(?) corresponds to a relatively flat region of
the error surface, the algorithm can evolve very slowly and the training time
can become too long.
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8.7.3 Parameters Update: The Gradient Descent*

The training is performed using a training set D = {(x1,t1),...,%¢,ts) C
R? x V), where Y C RO (see Section 8.7.1).
There are two possible ways of performing the gradient descent algorithm:

e On-line learning: the parameters are updated after each sample of the
training set: 4
Aw) = —NVen|wi (8.41)

where €, denotes the network loss when the input is x,,.
e  Off-line learning (or Batch learning): the parameters are updated after
that the whole training set has been input to the network:

Aw = —nVE|ww), (8.42)
where =3 €,.

The parameter 7 is called learning rate and it is one of the main problems of
the gradient descent. In fact, if ) is too large, the parametrs change too much
from one iteration to the other and local minima can be missed because the
change of position on the error surface is too big. On the other hand, if 7 is too
small, the parameters do not change enough from one iteration to the other,
then the network moves too slowly on the error surface and the training time
becomes unusefully long. Moreover, the optimal 7 value is not constant along
the training and it should be changed at each iteration.

Equations (8.41) and (8.42) refer to the whole parameter set, but the corre-
sponding expressions can be used for a single parameter by using the results of
Section 8.7.1 which shows how to calculate the error function derivatives with
respect to any weight or bias. In the on-line version of the gradient descent,
the single weights are updated as follows (see Section 8.7.1 for the meaning
of symbols):

ng) = wz(;) — 7786:; = wz(;) —nd;izj, (8.43)
while in the batch learning, the above expression becomes:
¢
Wit =l Z D DU RN CE T
n=1

where 61-(71) is the value of &; for the n'" pattern in the training set.

An important example from the application point of view, is the MLP
where hidden nodes have the logistic sigmoid as activation function, output
nodes have linear activation function and the loss function is the quadratic
loss (see Chapter 5), i.e

¢
E=Y"llyi—til* (8.45)
i=1
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The derivation of the corresponding update rules are left for exercise (see
Problem 8.2). The minimization of the error function can be interpreted under
the maximum likelihood principle (see Chapter 5). In fact, the equation (8.45)
can be rewritten as:

4
E=—Inexp()_ |lyi — t;[|*) = —In L(y. t). (8.46)
=1

Since L(y,t) is the likelihood of the normal joint distribution (y,t), mini-
mizing the error function E corresponds to assume that the joint distribution
(y,t) is normal and, at the same time, to maximize its likelihood L(y,t).

The Softmax Function

If we assume that the joint distribution (y,t) is not normal, the choice of
the quadratic loss as loss function is not appropriate. For instance, if we
assume that the joint distribution is multinomial, the loss function, using the
maximum likelihood principle, is the so-called cross-entropy [1], i.e.:

0
e(y,t) = — Zti log y;. (8.47)
i=1

Using the cross-entropy as loss function, the error function is:

o
E=->Y tulogy, (8.48)

i=1 [=1

where t;; and y;; indicate the 1-th component of t; and y;, respectively.

If we use this error function to train MLP, it is possible to show [1] that the
identity activation function on the output nodes, i.e. g(z;) = 2; (i=1,...,0),
has to be replaced with the softmax function:

o) = —PE) (i=1,...,0). (8.49)

[6)
> exp(z)

Since g(z;) are always positive and their sum is 1, they can be viewed as
probabilities. Therefore a MLP having output nodes with the softmax as ac-
tivation function can be used for probability estimation. The derivation of the
corresponding learning rules for a MLLP having output nodes with the softmax
as activation function is left for exercise.
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8.7.4 The Torch Package

The Torch package® is a collection of libraries aimed at the development of
several machine learning algorithms [7]. The package enables one to quickly
develop, train and test the main kinds of neural networks, including the MLPs
described in the previous sections. The library is written in C++, but even a
superficial knowledge of such a language is sufficient to use Torch. A tutorial
distributed with the code enables one to easily write the programs simulating
ANNS.

8.8 Learning Vector Quantization

This section will focus on learning vector quantization [25] (LVQ), which is
a supervised learning algorithm for classification. LVQ is a prototype-based
classifier that performs a nearest prototype classification. Consider a training
set D = {(x1,%i),- -, (X¢,y¢)} € R?xC, where y; is a class label that assumes
values in C = {C1,...,Cp}. Prototype-based classifiers represent the training
set by a set of data points M = (mq,...,mg) C R? in the input space,
where K < {. The prototypes m; are not elements of the training set D, but
are yielded by the classifier during its phase of learning. A class v; € C is
associated to each prototype m; and the classification of a new data point
X is performed assigning the class of the closest prototype. This strategy is
called nearest prototype classification. Examples of (unsupervised) prototype-
based classifiers are the prototype-based clustering methods, e.g. K-Means and
SOM (see Chapter 6), when they are used for classification tasks. LVQ is a
supervised prototype method widely used in real time applications like speech
[30] and handwriting recognition [5]. We pass to describe the algorithm.

Consider a data set D = {(x1,¥:),..., (¢, y)} SR x C.

Using the same terminology introduced in Chapter 6, we call codebook the
set of data points M = {(my,v1)...,(mx,vk))} C R?xC, where K < {. The
generic element (m;,v;) € M is called codevector. There are three versions of
the LVQ, called LVQ1, LVQ2.1 and LVQ3 respectively. The last two can be
considered as successive refinements of the first one. The following shows the
three algorithms in detail. The first step of the LVQI training is the initial-
ization of the codebook. In general, such a task is performed by randomly
selecting K training samples with the only constraint of having at least one
codevector per class. The random selection should be performed by following
the a-priori distribution of the labeled examples. In this way, the fraction of
codevectors with a certain class C; should roughly correspond to the fraction
of training samples with the same class. LVQ1 has the following steps:

3 At the moment of writing this book, software and documentation can be down-
loaded at the following URL: www.torch.ch.
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Initialize the codebook M. Fix the number of iterations T'. Set ¢t = 1.
Choose a data point (X, ¥) randomly (with replacement) from the training
set D.

Find the codevector m, such that:

m, = arg izrlninK % — m,]|, (8.50)

i.e. the nearest neighbor of X among the codevectors of M.
Modify the codevector m, into m/, as follows:

m’ :{mcm(t)[)z—mc} if § = v, }

¢ m, — at)[& — m] if & # v.. (8.51)

In other words, the codevector m, is moved closer to X if the two vectors
have the same class label and the contrary otherwise. The value of a(t)
must be set empirically (values smaller than 0.1 are advised in [25]) and
it decreases linearly with ¢.

Leave unchanged all codevectors different from m,.:

m; =m,; if i #c. (8.52)

Therefore, the only codevector modified is the nearest neighbor of X, all
other codevectors are left unchanged.

If ¢ < T increase t by one and go to step 2.

Return the codebook.

We remark that the updating rule , when the labels of the winning codevector
and the input vector are the same, coincides with the learning rule of on-
line K-Means. Finally, the termination criterion of LVQ1 can be modified
replacing the number of iterations with the achievement of a value of error,
a-priori fixed.

LVQ2.1 is a refinement of LVQ1 and is generally carried out after LVQL.

LVQ2.1 has the following steps:

1.

2.

3.

Initialize the codebook M by means of LVQ1. Fix the number of iterations
T. Set t =1.

Choose a data point (X, 9) randomly (with replacement) from the training
set D.

Find the codevector (m;,v;) and (m;j,v;) such that

m; = arg min_ % - my

m; = arg min ||X — my]| (8.53)
J kv #0
Verify if X falls in the window defined by m; and m;, i.e. if:
1 % — m,
2 < ”)f m, || <s (8.54)
s 7 1% —myll
where s = % and w is a constant to be set empirically (values between

0.2 and 0.3 seem to perform well [25]).
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5. If % falls in the window, then the two codevectors are updated as follows:
! . 2 ,
;o N (8.55)
! . .

see above for a(t).
6. If t < T increase t by one and go to step 2.
7. Return the codebook.

The goal of LVQ2.1 is to push decision boundaries towards the surface decision
yielded by Bayes’ rule (see Chapter 5), but no attention is paid to the fact
that, the codevectors do not converge to a stable position as ¢ increases. To
prevent this behavior as far as possible, the window w within the adaptation
rule takes place must be chosen carefully. Moreover, the related term

_ | % =y — % — m|
- . ,

where m; and m; are defined as in (8.53), yields the hypothesis margin of the
classifier [8]. Hence LVQ2.1 can be seen as a classifier which aims at structural
risk minimization (see Chapter 7) during training, comparable to support
vector machines (see Chapter 9).

To overcome the LVQ2.1 stability problems, it was necessary to introduce
a further correction that tries to deal with this problem. The result is the
LVQ3 algorithm which is similar to LVQ2.1. LVQ3 chooses a pattern X and
picks the two closest codevectors m; and m;. If they are in the window and
one belongs to the same class of X and the other not, the LVQ2.1 learning
rule is applied. If they are in the window and both codevectors have the same
class of X the following rule is applied:

(8.56)

LVQ3 ensures higher stability for the codevectors position as the number
of iterations ¢ increases. The value of € must be set empirically and values
between 0.1 and 0.5 seem to produce good results [25]. Finally, variants of the
LVQ algorithm have been proposed in [17][43].

8.8.1 The LVQ_PAK Software Package

The LVQ algorithm described in the previous section is implemented in a
package that can be downloaded from the web.* This section proposes a quick
tutorial (detailed instructions are available in [25]) on the main functions
available in the package. The following shows the steps necessary to build a
quantizer using a labeled data set and the LVQ1 algorithm:

4 At the time this book is being written the package is available at the following
URL: http://www.cis.hut.fi/research/som-research/nnrc-programs.shtml.
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1. Initialization. The first step is the initialization of the codebook which is
performed with the following command:

eveninit -noc 200 -din train.dat -cout cbookl.dat -knn 3

where noc stands for the number of codevectors, din corresponds to the
name of the file containing the training data, cout provides the name of
the output codebook file and knn verifies that the three nearest neighobors
of each initialized codevector have the same label.

2. LVQ1 training. The training is performed by the following command:

lvql -din train.dat -cin cbookl.dat -cout cbook2.dat -rlen
10000 -alpha 0.05

where cin stands for the initial codebook (the output of the first step),
rlen gives the number of training steps (if there are less training samples
than training steps, then the same samples are used several times) and
alpha is the «(t) parameter.

3. Test. The effectiveness of the codebook can be measured with the following
command:

accuracy -din test.dat -cin cbook2.dat

where test.dat is a file containing labeled test data (different from the
data in training.dat). The accuracy is measured in terms of recognition
rate, i.e. number of input vectors mapped into the correct label.

The LVQ_PAK offers several more functions and options which enable one
to obtain quantizers corresponding to the algorithms shown in the previous
section.

8.9 Ensemble Methods

This section presents the ensemble methods, i.e. the techniques aimed at com-
bining the predictions of a set of single learners, e.g. a set of classifiers or a set
of regressors, f;(x), trained individually, in order to obtain an overall learner
Fx;(x) which performs better than any single f;(x) (see Figure 8.8). In this
section we will focus on ensemble methods for classification.

The combination of the single output can be performed in different ways
(see [23] for a survey), but commonly it consists of a majority vote (i.e. the
output of Fx is the most frequent output among the values of the f;(x)),
or of the average of the f(x) output values. The set F' = {f1(x),..., fn(x)}
is called classifier ensemble and it can be obtained with different techniques
(see below). This subject is explored in detail in both monographies [26] and
tutorials [10][11][36]. The rest of this part will show some possible reasons of
the ensemble improvements over single classifiers (Section 8.9.1) and the main
techniques for creating ensembles (Section 8.9.2).



198 8 Supervised Neural Networks and Ensemble Methods
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Fig. 8.8. Classifiers ensemble. The same input is presented to different classifiers
and their output is combined resulting into a classifier Fis(x).

8.9.1 Classifier Diversity and Ensemble Performance*

Classifier combination is an operation that makes sense only if the classifiers
are diverse, i.e. if they make different errors on the same data [38] or, in more
rigorous terms, are statistically independent. In fact, given an ensemble of
N classifiers, it is reasonable to expect that those who misclassify a given
input x distribute their output more or less uniformly over the wrong labels,
while those who classify correctly the same x provide the same output, i.e.
the correct class. In this way, a simple majority vote can lead Fx to assign
the correct label to x.

As an example, consider an ensemble of N classifiers with recognition rate
p, where the recognition rate is the percentage of correctly classified samples. If
the outputs of the classifiers are statistically independent, then the probability
of n classifiers giving the right answer is:

N!

nl(N —n)! (8:57)

p(n) =p"(L—p)¥ " (JD =pN "L -p)"
and it is plotted as a function of n in Figure 8.9 for N = 20 and p €
{0.25,0.50,0.75}. The plot shows that the most probable number of classifiers
giving the right answer is 5, 10 and 15 for the three values of p respectively.
Although shown for a specific case, this corresponds to a general result: when
the recognition rate is higher than 0.5, the most probable n is always higher
than N/2. Tt is even more important to note that the probability of n being
higher than N/2 is 0.004, 0.41 and 0.98 for p = 0.25, p = 0.5 and p = 0.75
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0.25

p=0.25 p=0.75

Fig. 8.9. Number of correct classifiers. The plots show the probability of n classifiers
providing the correct answer for p = 0.25, 0.5 and 0.75 respectively.

respectively (in the case of the above example). In other words, the applica-
tion of a simple majority vote® leads to the correct result in a percentage of
cases higher than the recognition rate of the single classifiers. It is worth to
remember that such a result applies only when the output of the classifiers is
statistically independent.

The same phenomenon can be seen under a different perspective [38]. A
classifier f;(x) can be seen as an approximation of a true (and unknown)
function f(x). In general, each classifier is trained to minimize the empirical
risk:

Y4
MSE[f;] = Z — fi(x;)) (8.58)

<\\,_.

where ¢ is the number of training samples and the quadratic loss (see Chapter
5) is chosen as loss function.
The above expression can be thought of as the average squared value of
mi(x) =y — fi(xi):
MSEL[f;] = E[m3(x)]. (8.59)

5 The expression magjority vote means that the output of Fx(x) is the most frequent
output of the single ensemble classifiers f;(x).
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Consider now the ensemble obtained by simply averaging over the output of
the single classifiers:

1N
=% > filx), (8.60)
i=1
by plugging Equation 8.58 into the last expression we have:
1N
Fr(x) = f(x) = 1 3 mi() (3.61)
i=1

If the m;(x) are mutually independent with zero mean, then the MSE of the
ensemble is as follows:

1
MSE|[Fs(x Z mi(x mS[Z m2(x)] (8.62)
(the demonstration is the subject of Problem 8.6), and it corresponds to:
MSE|[Fs(x Z MSELf;(x)], (8.63)

i.e. the average of the empirical mean squared errors of the different classi-
fiers f;(x). Such a result shows that, in principle, the MSE can be arbitrarily
decreased by simply increasing N. On the other hand, in practice the inde-
pendence assumptions made to obtain the above equation are less and less
verified when the number of classifier increases [38]. In fact, both empirical
and theoretical investigations show that performance of an ensemble improves
up to 20-25 classifiers [36] and then it saturates.

This section has shown that the diversity is a key factor for the classi-
fier ensembles. The next section shows what are the main methods to create
ensembles of classifiers as diverse as possible.

8.9.2 Creating Ensemble of Diverse Classifiers

This section proposes a quick survey of the most common methods used to
build ensembles of classifiers as diverse as possible.

Bayesian Voting

Consider a training set X and a classifier f(x) which can be trained. The
result of the training is a hypothesis h(x), i.e. a particular instance of the
classifier determined by a specific parameter set. As an example, consider the
neural networks introduced at the beginning of this chapter, a network with
a given architecture (number of nodes and structure of the connections) and
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a given set of weights W corresponds to a hypothesis h(x). The set of all
possible networks with the same architecture, but different parameters sets is
called Hypothesis Space H. Each neural network is an element of H and each
element of H is a neural network with a given architecture.

Consider the conditional probability distribution p(f(x) = y|h, x), i.e. the
probability of observing the output y given the hypothesis h and the input x.
The problem of predicting the value of f(x) can be thought of as the problem
of estimating p(f(x) = y|X,x). Such a probability can be rewritten as a
weighted sum:

p(f(x) = y|X,x) = Y h(x)p(h|X), (8.64)
heH
i.e. as an ensemble where each classifier is weighted following its posteri-
ori probability p(h|X). The posterior can be estimated with the product
p(X|h)p(h) (keeping into account that p(X) is a constant).

Such an approach has two main problems. The first is that p(h) is not
often known and it is typically selected based on computational convenience
rather than on an actual knowledge of the hypothesis distribution. Moreover,
while for some classifiers the hypothesis space can be enumerated, for others
(e.g. neural networks or support vector machines) it can only be sampled.

Bagging

One of the most straightforward ways to obtain diversity is to train the same
classifier over different training samples. Such an approach is especially suit-
able for algorithms that are heavily affected by changes even small in the
training set [10].

The simplest method in this family of approaches is the Bootstrap Aggre-
gation [3], often called Bagging. Bagging is derived by a statistical method
called bootstrap [14].

Given a training set D = {(x1,y1),...,(x¢,ye)}, the bootstrap method
consists in creating independently M new data sets D, ..., Djs. Each data set
D; is generated by randoming picking ¢ data points from D;, with replacement.
Therefore some duplicated data points can exist in D;.

Being said that, in bagging the same learning algorithm is presented to M
different training sets obtained by randomly drawing n < ¢ data points from
the original training set D, with replacement. A common choice consists in
choosing the cardinality n of each data subset (the bootstrap aggregate) equal
to ~ %Z Each bootstrap aggregate is used to train a classifier, by means of
the same learning algorithm. Finally, the classification is produced by means
of a majority vote on the M classifiers. The properties of bagging have been
widely explored. In particular bagging seems to have stability properties. A
learning algorithm is called unstable® if small changes in the training data pro-
duces different classifiers and very large changes in their performances (e.g.

5 Examples of unstable classifiers are the decision trees classifiers, which are not
discussed in the book.
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recognition rate). Bagging averages over the eventual discontinuities that can
occurr in a classifier, generated by the presence or the absence of a given pat-
tern, making the classfier more stable. Finally, we remark that bagging is an
example of a statistical method called arcing, acronym of adaptive reiweight-
ing and combining [4]. Arcing indicates the reusing data in order to improve
classification.

Another method based on the majority voting consists in obtaining M
classifiers by alternatively dropping out of the training set M randomly ex-
tracted disjoint subsets. Such a method is similar to an M-fold crossvalidation
and the ensembles obtained in this way are often called crossvalidated com-
mittees [37].

Boosting

The last ensemble method based on training resampling is the so-called boost-
ing [44]. We describe the boosting method considering a binary classification
problem, i.e. each data point can only classified in two different ways, C; and
Cy. Given a training set D = {(z1,%1), ..., (ze,ye)} € R x {C1,Cs}, we con-
sider three different classifiers Fy, Fy and F5. First we create a data set D;
randomly picking n < ¢ data points from the training set D without replace-
ment. Then we train the first classifier F; with D;. The classifier I} is a weak
lerner, namely its performances are slightly better than the coin toss. The
next step of the boosting consists in creating a new data set Dy generated as
follows. We make a coin toss. If the result is heads we present, one by one, the
data points of D which does not belong to D; until the classifier F; misclassi-
fies a data sample. We add this pattern to Dy. We repeat the coin toss. If the
result is heads we look again for another missclassified pattern by F; and we
add it to Ds. If the result is tails we look for a data point that F} classifies
correctly and we add this pattern to Dy. We repeat the procedure until no
pattern can be added to Ds. In this way, the data set Dy contains half of the
pattern correctly classified whereas the other half is formed by pattern miss-
classified by the classifier F;. We train the second classifier F5 on Ds. Then
we look for a third data set D3 generated as follows. We present the remaining
data points of D, i.e. the patterns of D that are neither elements of D; nor
elements of Dy, to the classifiers F; and F5. If the classifiers do not agree we
add the data point to D3, otherwise the pattern is discarded. We repeat the
procedure until it is not possible to add pattern to D3. Then we train the
last classifier F3 on Ds. Finally, a new test pattern X, that does not belong
to D, is classified on the basis of the responses of the three classifiers. If the
classifiers F; and F, agree about the class to assign to X, the class is assigned
to X. Otherwise, we assign to X, the class assigned by F3. We conclude this
description of boosting remarking that the cardinality of the first data set is
¢

usually chosen equal to n = 3.
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AdaBoost

Among the variants of boosting, the most popular is AdaBoost [15]. Ad-
aBoost, acronym of adaptive boosting, allows to add weak learner until a
training error, apriori fixed, is achieved. In AdaBoost algorithm a weight W
is associated to each pattern of the training set. W represents the pattern
probability to be chosen by a component classifier of the ensemble. If the
pattern is correctly classified W is decreased, otherwise it is increased. There-
fore this algorithm pays particular attention to the pattern difficult to be
classified. Let D = {(x1,¥1),---,(Xe,9¢)} € R x {C1,Ca} be a training set
and W= {W(1),...,W(¢)} where W; is the weight associated to the generic
pattern (x;,y;). AdaBoost algorithm has the following steps:

1. Initialize k = 0, Ko, Wi(i) =7 (i=1,...,0)

2. k=k+1
3. Train classifier Fy, on D using Wy (i)
4. Compute the loss function L of Fj
5. Compute
_ 11 1—Fj
ap = 9 n Fk .
6. Compute

~ [ ARWE(E) exp(—ag) if hp(x;) =y
Wi (i) = {AZWz(i) explon) | if hy(x)) % 1 }

¢
where Ay is such that ZWk(z) = 1 and hy(x;) represents the class
i=1
associated to x; by the classifier F.
7. if k < K go to step 2
8. return Ej and ay (k=1,...,Kpy)

To classify a new test point X, AdaBoost computes a weighted sums of the
outputs (or hypotheses) hy(X) by the classifier Fj:

Ky
F(R) = arhi(%). (8.65)
k=1

In the case of binary classification, the decision rule is given by sgn(F(%),
where sgn(-) is the signum function.

Finally, we remark that Adaboost algorithm with some ad hoc modifica-
tions can be applied to regression problems [16].

Feature-Based Methods

When the input vectors x contain a high number of redundant features, the
diversity can be obtained by using different feature subsets to train the ensem-
ble classifiers. The literature reports few examples of such a technique [6][45]
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and the results seem to suggest that cannot be applied for small feature sets.
In fact, in such a case the removal of certain features can lead to classifiers
with a recognition rate below 50% (see Section 8.9.1 for the consequences).

Target-Based Methods

The labels of the training samples are a further source of diversity. A method
called error-correcting output code [12] splits the data classes into two groups
A; and By and builds a binary classifier h;(x) capable of assigning an input
vector to one of the two class groups. The process is repeated L times resulting
into an ensemble of classifiers. Each time a classifier h;(x) assigns an input
vector to a class group, then all the classes into such group receive one vote.
Once the output of all h;(x) classifiers is available, the class that has received
the highest number of votes is taken as output of the ensemble.

8.10 Conclusions

In this chapter we have described the most popular supervised neural network,
the Multilayer Perceptron. We have presented a Learning Vector Quantiza-
tion, which is a prototype-based classifier method quite effective in real time
applications. We also review ensemble methods focusing on the ones for the
classification task. Finally, we provide some bibliographical remarks. A fun-
damental work, for its historical value, on neural networks is [42]. Multilayer
Perceptron is discussed in detail in [13][18][20][33]. A milestone in the lit-
erature on MLP is [1]. Backpropagation was historically introduced in [46]
but it was fully discussed in [41]. Learning vector quantization is discussed
n [24]. A bibliography on learning vector quantization can be found in [35].
Finally, a comprehensive survey of the ensemble methods is [26], where an
entire monography is devoted to the topic.

Problems

8.1. Show that for the LDF corresponding to Equation (8.10), the distance of
a point with respect to the surface y(x) = 0 is y(x)/||wl|.

8.2. Find the on-line gradient descent update rules for an MLP where hidden
nodes have the logistic sigmoid as activation function, the output nodes have
a linear activation function and the loss function is the quadratic loss (see [1]
for the solution).

8.3. Find the on-line gradient descent update rules for an MLP when the loss
function is the cross-entropy.
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8.4. Using the maximum likelihood principle, prove that if the joint distribu-
tion (y,t) is multinomial then the loss function is the cross-entropy.

8.5. Use the Torch package (www.torch.ch) to implement, train and test a
multilayer perceptron. If you have no data at disposition, you can find several
interesting benchmarks at the following URL:

http://www.ics.uci.edu/~mlearn/MLRepository.html

8.6. Demonstrate that, if the m;(x) are statistically independent, then:

N

Elly o mi))?] = €Y mi ) (8.66)

i=1
(see Appendix A for help).

8.7. Use the LVQ_PAK package to classify the same data used in Problem 8.5.
Compare the results obtained by the two classifiers. Do the classifiers perform
different errors? What is the percentage of cases where both classifiers are
correct? And what the percentage of cases where only one of the two classifiers
is wrong?

8.8. Train an MLP using different initializations for the weights. Use the re-
sulting networks to build an ensemble and measure the improvement with
respect to the best and the worse single MLP (for the data see Problem 8.5).

8.9. Consider the Iris Plant data set that can be found in the repository
introduced in problem 8.5. The data set contains 150 four dimensional samples
belonging to three different classes. Implement and train an autoassociative
MLP (i.e. an MLP that has the same vector as input and output) with two
hidden nodes and, after the training, plot the output of the hidden nodes in a
two dimensional scatter-plot. Can you still observe the clusters corresponding
to the three classes? If you use the output of the hidden nodes as input to a
classifier, do you obtain the same classification performance as when you use
the original four dimensional vectors?

8.10. Create an ensemble of neural networks using the Error-correcting output
code approach (see Section 8.9.2).
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9

Kernel Methods

What the reader should know to understand this chapter

Notions of calculus.
Chapters 5, 6, and 7.

e Although the reading of Appendix D is not mandatory, it represents an
advantage for the chapter understanding.

What the reader should know after reading this chapter

Support vector machines for classification and regression.
Gaussian Processes.

Kernel PCA.

Kernel fisher discriminant.

One class SVM.

Kernel and spectral methods for clustering.

9.1 Introduction

Kernel methods are algorithms which allow to project implicitly the data in
a high-dimensional space. The use of kernel functions to make computations
was introduced by [1] in 1964. Two decades later several authors [60][68][70]
proposed a neural network, radial basis function (RBF), based on the kernel
functions which was widely used in many applicative fields. Since 1995 kernel
methods have conquered a fundamental place in machine learning when sup-
port vector machines (SVMs) were proposed. In several applications, SVMs
have showed better performances in comparison with other machine learning
algorithms. SVM strategy can be summarized in two steps. In the first step the
data are projected implicitly onto a high-dimensional space by means of the
kernel trick [74] which consists of replacing the inner product between data
vectors with a kernel function. The second step consists of applying a linear
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Fig. 9.1. Data in the input space (at left of the arrow) and their projections in a
new space (at right of the arrow).

classifier to the projected data. Since a linear classifier can solve a very lim-
ited class of problems, the kernel trick is used to enpower the linear classifier,
making SVM capable of solving a larger class of problems.

The enormous success of SVMs has induced the researchers to extend the
SVM strategy to other existing algorithms, i.e. using the kernel trick to en-
power learning algorithms, already present in the literature, improving their
performances. Therefore with the term kernel methods we generally indicate
algorithms that use the kernel trick. The basic idea of kernel methods consists
in looking for an appropriate mapping of data such that it is easier to process
the projected data. To illustrate this concept, we consider Figure 9.1. The
data in the input space are not linearly separable (see Chapter 7), i.e. there
does not exist a line' that separates black disks from white circles. However,
if we choose an appropriate mapping then the data projections are linearly
separable and can be processed by a linear classifier (e.g. a linear discrimi-
nant).

The aim of this chapter is to propose an overview of the main kernel
methods, neglecting, for sake of space, those algorithms, like the radial basis
function, which are not popular in machine learning community anymore. The
chapter is organized as follows: Section 9.2 describes the basic tools of the op-
timization theory used in the kernel methods. Sections 9.3 and 9.4 are devoted
to support vector machines for classification. Section 9.5 introduces Support
Vector Machines for Regression. Section 9.6 describes Gaussian processes ex-
ploring their connections with support vector machines. Sections 9.7 and 9.8
present respectively the kernel Fisher discriminant and the kernel PCA. Sec-
tion 9.9 discusses the support vector machine, the so-called one-class SVM,
when the data are only formed by positive examples. Section 9.10 is devoted
to kernel and the spectral method for clustering. Section 9.11 reviews the main
public domain software packages that implement kernel methods. Finally, in
Section 9.12 some conclusions are drawn.

L If the input dimensionality is higher than 2, the line has to be replaced with a
plane or a hyperplane.
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9.2 Lagrange Method and Kuhn Tucker Theorem

In this section we describe the basic tools of the optimization theory used in
the costruction of the kernel methods. The first method for solving optimiza-
tion problems, the Fermat optimization theorem, was discovered in 1629 and
published 50 years later [26]. The Fermat optimization theorem provides a
method for finding the minimum or the maximum of functions defined in the
entire space, without constraints. We only state the theorem, omitting the
proof for the sake of brevity.

Theorem 14 (Fermat) Let f be a function of n variables differentiable at
the point x*. If ©* is a point of local extremum of the function f(x), then the
differential of the function in the point in the point x* D f(x*) is

Df(x*) =0, (9.1)
which implies
Of(x*) _0f(*) _ 0f(@") _
ory  Odxrs  Or, 0 (9.2)

A point for which Equation (9.1) holds is called a stationary point. Fermat
optimization theorem provides a method for finding the stationary points of
functions. The method consists in solving the system (9.2) of n equations with
n unknown values z* = (a7,23,...,2}).

9.2.1 Lagrange Multipliers Method

The next step in the optimization theory was done by [49] in 1788 who provides
a method for solving the optimization problem with constraints (conditional
optimization problem). The conditional optimization problem consists in min-
imizing (or maximizing) the function f, f : R™ — R under m constraints

91(x) = go(x) = - -+ = g () = 0. (9.3)

We consider only functions g, r = 1, ..., m that possess some differentiability
properties. We assume that in the subset X of the space R™ all functions g,
and their partial derivatives are continous. We have the following definition:

Definition 20 Let X C R™ be and f : R® — R. We say that x* € X is
a point of local minimum in the problem of minimizing f under constraints

(9.3) if there exists € > 0 such that Vx that satisfy (9.8) and
|z —a*]| < e (9.4)

the inequality
f(x) = f(a7) (9-5)
holds.
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The definition of maximum is analogous.
Now we pass to define the function L (Lagrangian), as follows:

L(z, A, Ao) = Ao f(x) + Z Akgr (@ (9.6)

where the real values Ao, A\1,..., A\, are called Lagrange multipliers. The fol-
lowing theorem was proven by [49], whose proof is omitted for the sake of the
brevity.

Theorem 15 (Lagrange) Let the functions gi(z), k = 0,1,...,m be con-
tinuous and differentiable in a vicinity of x*. If x* is the point of a local
extremum, then one can find Lagrange multipliers \* = (A, A5,..., A%,) and
Ay which are not equal to zero simultaneously such that the dzﬁerentml of the
Lagrangian DL(z*, A\*, A§) is null (stationary condition), i.e.

DL(z*, \*,\j)) = 0. (9.7)
That implies
OL(a*, A", 2p)
3:17i

To guarantee that Ao # 0 it is sufficient that them vectors Dgy (x*), Dga(z*), . . .,
Dy (z*) are linearly independent. Where Dg;(x*) stands, respectively, for the

differential of g;(z*) (i=1, ..., m).

Therefore to find the stationary point z* the system formed by the following
n 4+ m equations

=0 i=1,2,...,n. (9.8)

£ </\of +Zx\kgk ):o (i=1,...,n) (9.9)

gi(x) =ga(x) =+ =gm(x) =0 (9.10)
must be solved.

The system has n+m equations with n+m+ 1 unknown values. Therefore
the system is indeterminate, i.e has infinite solutions.? However Lagrange
multipliers are defined with accuracy up to a common multiplier.

If Ag # 0 then one can multiply all Lagrange multipliers by a constant to
obtain Ay = 1. Hence the number of equations becomes equal to the number
of unknowns. The system assumes the final form:

% <f(x) +) Akgk(x)> =0. (9.11)
g k=1

91(2) = ga(a) = -+ = gn(2) = 0. (0.12)

2 The number of solutions is (at least) oo’
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9.2.2 Kuhn Tucker Theorem

In 1951 an extension of the Lagrange method to cope with constraints of
inequality type was suggested by [48]. A solution, the Kuhn Tucker theorem, to
the conver optimization problem, i.e. to minimize a convezr objective function
under certain conver constraints of inequality type, was proposed.

We recall the concept of convexness.

Definition 21 The set A is called convex if Vx,y it contains the interval
[z, y] ={z:z=azx+ (1 — a)y, 0<a<1} (9.13)
that connects these points.

Definition 22 The function f is called convex ifV,y the inequality (Jensen
inequality )

flax+ (1 —a)y) <af(z)+ (1 —a)f(y), 0<ac<l (9.14)
holds true.

We consider the following convex optimization problem:

Problem 2 Let X be a linear space, let A be a convex subset of this space,
and let f(x) and gi(z), k=1,...,m be convex functions.
Minimize the function f(x) subject to the constraints

zeA (9.15)
gr(z) <0 k=1,...,m. (9.16)

To solve this problem we consider the Lagrangian function

L(z, A, Ao) = Ao f(z +Z/\kgk (9.17)

where A = (Aq,..., ).
We have the following theorem.

Theorem 16 (Kuhn Tucker) Ifxz* minimizes the function f(x) under con-
straints (9.15) and (9.16), then exist Lagrange multipliers N§ and \* =
(A%, ..., Ax) that are simultaneously not equal to zero and such that the fol-
lowing three conditions hold true:

1. The minimum principle

min L(z, A, A*). (9.18)

z€EA

2. The non-negativeness conditions

AL >0 k=0,1,...,m. (9.19)
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3. The Kuhn Tucker conditions (or Karush-Kuhn Tucker conditions)
L gr(x®) =0, E=1,...,m. (9.20)

If Mg # 0 then conditions (1), (2) and (3) are sufficient conditions for x* to
be the solution of the optimization problem.

To get Ao # 0, it is sufficient that exists & such that the following conditions
(Slater conditions)

gi() <0, i=1,....m (9.21)

holds.
This corollary follows from the Kuhn Tucker theorem.

Corollary 2 If the Slater conditions are satisfied, then one can choose A\g = 1
and rewrite the Lagrangian in the form

L, 1,0) = f(2) + 3 Mw(a). (9.22)
k=1

Now the Lagrangian is defined as a function of n+m variables and conditions
of the Kuhn Tucker theorem are equivalent to the existence of a saddle point
(x*, X*) of the Lagrangian, i.e.

minL(z, 1, \*) =L(z,1,\*) = maédL(x, 1,A%). (9.23)

z€A A>

Proof. The left equality of (9.23) follows from conditions (1) of the Kuhn
Tucker Theorem and the right equality follows from conditions (3) and (2) of
the same theorem.

Lagrange Methods and Kuhn Tucker are the basic optimization tools of the
kernel methods further described in the book.

9.3 Support Vector Machines for Classification

In this section we describe the most popular kernel method, the support vector
machines (SVM) for classification. For the sake of the simplicity, we consider
a problem of the binary classification, that is the training set has only two
classes.

Let D be a training set formed by ¢ patterns p;. Each pattern p; is a
couple of values (x;,y;) where the first term x; (x; € R") is called input and
the second term (output) y; can assume only two possible discrete values,
that we fix conventionally at +1 and —1. The patterns with output +1 are
called positive patterns, while the others are called negative patterns. Finally,
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Fig. 9.2. A binary classification problem: to separate circles from disks. The optimal
hyperplane is orthogonal to the shortest line connecting the convex hulls of the two
classes and intersects it halfway between the two classes.

we assume that each pattern p; has been generated according to a unknown
probability distribution P(x,y).

The problem of learning how to classify the patterns correctly consists in
estimating a function f : R™ — 41 using training set patterns

(Xlayl)w"v(vayf) eR" x 1 (924)

such that f will correctly classify unseen examples (x,y), i.e. f(x) = y for
examples (x,y) generated from the same probability distribution P(x,y) of
the training set. The patterns (x;,y;) are usually assumed to be i.i.d i.e.
identically independent distributed.

The underlying idea of SVM is the optimal hyperplane algorithm.

9.3.1 Optimal Hyperplane Algorithm
The class of hyperplanes
w-x+b=0 w,x eR" beR (9.25)
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corresponding to decision functions®
f(x) = sgn(w -x+b) (9.26)

was widely discussed by [88][87]. They proposed a learning algorithm, the
generalized portrait for linearly separable problems, that computed f from
empirical data.

Besides, they observed that among all hyperplanes separating the data,
there exists a unique one, the optimal hyperplane, yielding the maximum mar-
gin of separation between the classes

mag(milrl(Hx—aci||:XGR”7 w-x+b=0, i=1,...,0). (9.27)
To compute the Optimal Hyperplane the following optimization problem has
to be solved:

1
min §||w||2 (9.28)
subject to y;(w-x;) +b) >1 i=1,...,0 (9.29)

This conditional optimization problem can be solved by introducing Lagrange
multipliers «; > 0 and a Lagrangian function (see Section 9.2) L

L
L(w,b,a) = %HWHQ—Zai((xi W) +b)— 1 (9.30)
i=1

where* a = (ay, ..., ap).

The Lagrangian IL has to be minimized with respect to the primal variables
w and b and maximized with respect to the dual variables «;, i.e. a saddle
point has to be found. The optimization problem can be solved by means of
the Kuhn Tucker theorem (see Section 9.2). The Kuhn Tucker theorem implies
that the condition at the saddle point, the derivatives of I with respect to the
primal variables must vanish,

OL(w,b, o) OL(w,b, o)

= = 31
% 0, T 0 (9.31)
which leads to ,
> ey =0 (9.32)
i=1
and
¢
w = Z QG YiX; . (9.33)
i=1

3 The function signum sgn(u) is defined as follows: sgn(u) = 1 if u > 0; sgn(u) =
—1ifu<0; sgn(u) =0if u =0.
4 This convention is adopted in the rest of the chapter.
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Hence the solution vector w is an expansion in terms of a subset of the training
set patterns, namely those patterns whose a; are # 0. These patterns are
called support vectors (SV).

The Kuhn Tucker theorem implies that «; must satisfy the Karush-Kuhn
Tucker (KKT) conditions

ai-[yi(xi-wi)—i—b)—l]zo i=1,...,¢ (934)

These conditions imply that the support vectors lie on the margin. All re-
maining samples of the training set are irrelevant for the optimization since
their «; is null. This implies that the hyperplane is completely determined by
the patterns closest to it, the solution should not depend on other patterns of
the training set. Therefore (9.33) can be written as

0
w = Z QY% (9.35)
a, €SV

Plugging (9.32) and (9.33) into L, one eliminates the primal variables and the
optimization problem becomes:

¢ ¢
1
mgngai ) ‘21 ;oYY (Xi - X;5) (9.36)
i= i,j=
subject to a; >0 i=1,...,¢ (9.37)
¢
> aiyi =0. (9.38)
i=1

Therefore the hyperplane decision function can be written as

¢
f(z) =sgn (Z iy (x; - x5) + b) . (9.39)

The optimal hyperplane algorithm can just solve linear problems. It cannot
solve simple nonlinear problems as XOR, how underlined by [59]. In order to
build a classifier that can solve nonlinear problems one has to find a method
to perform the optimal hyperplane algorithm in a feature space nonlinearly
related to the input space [1]. To this purpose, we recall the definition of
Mercer kernel [5] (see Appendix D).

Definition 23 Let X be a nonempty set. A function G : X x X — R is called

a Mercer kernel (or positive definite kernel) if and only if is symmetric (i.e
n n

G(z,y) = G(y,z) Va,y € X) and ZchckG(xj,xk) >0 for alln > 2,
j=1k=1
T1,...,T, € X and cy,...,cp CTR.
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An example of the the Mercer kernel is the Gaussian G(x,y) = exp(—”xgig'”z)
where 0 € R, x,y € R™.

The Mercer theorem (see Appendix D) states that Mercer kernels permit
performing scalar products in feature spaces that are nonlinearly related to
the input space. In particular, each Mercer kernel K (z,y), K : X x X — R
can be written as

K(z,y) = (#(z) - &(y)) (9.40)

where @ : X — F, F is called the feature space.

Hence it is adequate to substitute in the formula (9.39) the inner prod-
uct (x; - x;) with the Kernel K(x;,x;) to perform the optimal hyperplane
algorithm in the feature space F. This method is called the kernel trick [77].

9.3.2 Support Vector Machine Construction

To construct a SVM, an optimal hyperplane in some feature space has to be
computed. Hence it is sufficient to substitute each training example x; with
its corresponding image in the feature space @(x;). The weight vector (9.33)
becomes an expansion of vectors in the seature space

L
w = Zaiyi@(xi). (9.41)

Hence the weight vector is not directly computable when the mapping & is
unknown. Since ¢(x;) occur only in scalar products, scalar products can be
substituted by an appropriate Mercer kernel K, leading to a generalization of
the decision function (9.39)

¢
F(x) = sgn (Z Qi B(x;) - B(x;)) + b)

¢
= sgn (Z oy K (x4, %5) + b) (9.42)

i=1

and the following quadratic problem to optimize:

¢ ¢
1
max z; @ =3 -21 iy K (%, %) (9.43)
1= 1,)=
subject to a; >0 i=1,...,¢ (9.44)

¢
> aiy; =0. (9.45)
=1

In real-world problems due to the presence of noise, some mislabelled samples
may exist and classes may be partially overlapped. Therefore it is necessary
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to allow the possibility that some examples can violate (9.29). In order to get
that, we introduce slack variables [17][85]

& >0 i=1,...,L (9.46)

The slack variable &; is strictly positive when the respective sample x; violates
Equation (9.29); otherwise it is null. Using slack variables we can relax the
constraints in the following way:

yi - (W-x)+b)>1-§ i=1,...,0 (9.47)

Therefore the constructed classifier, support vector machine, allows us to con-
trol at the same time the margin (||w||) and the number of training errors,
given by the number of §; # 0, by means of the minimization of the objective
function:

L
r(w,&) = Lwl? + O Y& (9.48)
i=1

subject to the constraints of (9.46) and (9.47). In Equation (9.48) & stands for
&= (&,...,&). The parameter C > 0, called regularization constant,® allows
us to manage the trade-off between the number of the errors and the margin
of hyperplane.

Plugging the constraints in (9.48) and rewriting in terms of Lagrange mul-
tipliers, we obtain the following problem to maximize

¢ ¢
1
max = Z =g Z o0y K (%5, %5) (9.49)
i=1 i,j=1
subjectto 0<a; <C i=1,...,¢ (9.50)

4
i=1

The only difference from the separable case is the upper bound C on the
Lagrange multipliers «;. As in the separable case, the decision assumes the
form (9.42) The threshold b can be computed by exploiting the fact that for
all SVs x; with a; < C, the slack variable ¢; is zero, therefore

4
D yiay K(xiyx;) +b = ys. (9.52)
i=1

The solution of the system formed by Equations (9.49), (9.50), and (9.51)
requires quadratic programming (QP) techniques, which are not always effi-
cient. However, it is possible to use in SVMs different approaches that do not
require QP techniques.

® The term regularization constant is motivated in Section 9.3.6.
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A Linear Programming Approach to Classification

Instead of using quadratic programming it is also possible to derive a kernel
classifier in which the learning task involves linear programming (LP) instead.
Whereas in the quadratic programming approach we look for the hyperplane
that maximizes the margin (the optimal hyperplane), in this approach we
look for the sparsest separating hyperplane [19] without considering the mar-

gin. An approximate solution [19] to this problem can be obtained replacing
¢

in the equation (9.48), the term i|w|*> with Zai. If we repeat the same

i=1
computational strategy that we have adopted in the case of the Optimal Sep-
arating Hyperplane, after having introduced the slack variables and the kernel
trick, we obtain the following linear optmization problem:

¢ 1
min [Z o + CZ&] (9.53)
= Li=1 i=1

J4
Yi ZO[Z‘K(XZ‘,XJ‘) +b > 1-— 51 (954)
j=1

where a; > 0 and & >0 for i = (1,...,¢).

Since an efficient technique, the simplex method [47], is available for solv-
ing linear programming problems this approach is a practical alternative to
conventional SVMs based on QP approaches. This linear programming ap-
proach [54] evolved independently of the QP approach to SVMs. It is also
possible to handle multiclass problems using linear programming techniques
[94].

9.3.3 Algorithmic Approaches to Solve Quadratic Programming

The methods we have considerated have involved linear or quadratic program-
ming. Linear programming can be implemented using the simplex method. LP
packages are included in the most popular mathematical software packages.

For quadratic programming there are also many appliable techniques in-
cluding conjugate gradient and primal-dual interior point methods [52]. Cer-
tain QP packages are readily appliable such as MINOS and LOQO. These
methods can be used to train an SVM rapidly but they have the disadvantage
that the ¢ x ¢ matrix K(x;,x;) (Gram matriz) is stored in the memory. For
small datasets this is possible, but for large datasets alternatives techniques
have to be used. These techniques can be grouped into three categories: tech-
niques in which kernel components are evaluated and discarded during learn-
ing, working set methods in which an evolving subset of data is used, and new
algorithms that explicitly exploit the structure of the problem.
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For the first category the most obvious approach is to sequentially update
the «; and this is the approach used by the kernel adatron algorithm (KA)
[33].

For binary classification, with no soft margin or bias, this is a simple
gradient ascent procedure on (9.49) in which a; > 0 initially and the «; are
subsequently sequentially updated using

where
4
Bi=ai+n|[1—y Y o K(x;,%;) (9.56)
j=1

and 6(3) is the Heaviside step function.
The optimal learning rate 7 is

! (9.57)
K(xia Xi) . .
A sufficient condition for the convergence is 0 < nK(x;,x;) < 2.

Although KA is not fast as most QP routines, it is very easy to implement
and it is quite useful for teaching purposes.

Chunking and Decomposition

Rather than sequentially updating the «; the alternative is to update the «;
in parallel but using only a subset or chunk of data at each stage. Thus a
QP routine is used to optimize the Lagrangian on an initial arbitrary subset
of data. The support vectors found are retained and all other datapoints
(with «; = 0) discarded. A new working set of data is then derived from these
support vectors and additional datapoints which maximally violate the storage
constraints. This chunking [63] process is then iterated until the margin is
maximized. This procedure may still fail because the dataset is too large
or the hypothesis modelling the data is not sparse, i.e. most «; are non-
null. In this case decomposition [64] methods provide a better approach: these
algorithms only use a fixed size subset of data with the a; for the remainder
kept fixed. It is worth mentioning that SVM packages such as SVMTorch [15]
and SVMLight [41] use working set methods.

9.3.4 Sequential Minimal Optimization

The most popular decomposition method is the sequential minimal optimiza-
tion (SMO) algorithm [66]. Several SVM packages are based on SMO or on
its variants. In SMO only two «; are optimized at each iteration. If only two

66(B) is 1 if 8 > 0, 0 otherwise.
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parameters are optimized and the rest kept fixed then it is possible to derive
an analytical solution which can be executed using few numerical operations.
SMO is closely related to a group of optimization algorithms known as the
Bregman methods [8] and the row-action methods [12][13]. We pass to describe
the SMO algorithm and we fix the notation. All quantities related to the first
multiplier have the subscript 1, whereas the quantities related to the second
multiplier have the subscript 2. Since the multipliers are two, the multiplier
constraints can be easily represented in a graphical way. The constraint implies
that Lagrangian multipliers are included in a box, whereas the linear equality
constraint force that Lagrange multipliers lie on a diagonal line. Hence the
constrained maximum of the cost function must lie on the diagonal line. We
first compute the second multiplier cy and we express the diagonal line ends
in terms of aws. If y; and yo are not equal the constrained maximum lies on
the line a; — as = A hence s must satisfy the following inequalities:

M =max(0,as — ay); N =min(C,C + as — a1). (9.58)

On the other hand, if y; and y» are equal, the maximum lies on the line
a1 + ag = A hence as must satisfy the following inequalities:

M = max(0, as + a1 — C); N = min(C, ag + a1). (9.59)

Now we pass to compute the constrained maximum of the cost function. If
we derive the cost function (see Exercise 5) we obtain the following updating
rule for the second multiplier.

y2(E1 — Es)
2K (x1,x%2) — K(x1,%x1) — K(x2,%2)

ot +1) = as(t) — (9.60)

where E; = f(x; — y;) and as(t), «(t) indicates the preceeding (old) and the
updated value (new) value of the multiplier. This rule is also called uncon-
strained mazximum updating rule. The constrained mazimum can be found by
limitating the unconstrained maximum to the segment ends. Thus we obtain:

N if ag(t+1)> N
as(t+1) =< as(t+1)if M <az(t+1) <N (9.61)

The updated value o} (t + 1) of the other multiplier can be easily obtaining
remembering that the following relation, where s = y;y2, has to be fulfill:

aj(t+1) +sah(t+1) = ar(t) + saa(t + 1) (9.62)
Therefore we obtain:

i (t+1) = ay(t) + s(az(t) — ah(t + 1)) (9.63)
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Strategies for Choosing Multipliers to Optimize

SMO uses heuristic strategies to pick the multipliers to optimize. SMO im-
plement two different strategies to choose the first and the second multiplier.
The choice of the first multiplier (first choice multiplier) represents the outer
loop of the algorithm and makes the scanning of the whole training set look-
ing for the examples which do not fulfills the KKT conditions. When such an
example is found it is adopted as a candidate for optimization and it starts
the search for the second multiplier. The choice of the second multiplier (sec-
ond choice multiplier) is performed in order to maximize the step during joint
optimization. In particular, SMO computes the quantity |E; — Fsl|. If Ey is
positive the example with minimum value Ej is selected. On the other hand,
if F is negative the example with maximum value FEs is picked.

In order to make the SMO algorithm faster, the KKT conditions are re-
laxed. KKT conditions are fulfilled with an accuracy of e which generally
assumes values such as 1072 or 1073, Besides, further refinements of the SMO
algorithm have been refined with the aim of improving its speed [45]. Fi-
nally, we conclude this section showing how the threshold b of the SVM can
be computed using SMO. After each optimization step, the threshold has to
be computed since the KKT conditions must be satisfied by the optimized
samples. With some algebra it can obtain the following expression for the
threshold by (¢t + 1)

bl(t + 1) =F + yl(al(t + 1) — al(t))K(Xl,Xl)
+ya(ay(t +1) — a2 (t)) K (x1,%2) + b(t) (9.64)

which is valid when the multiplier «; is not at the bound.
Whereas the multiplier o is not at the bound, the following expression
holds:

b2(t + 1) = Fy + yl(al (t + 1) — Oél(t))K(Xl,Xg)
+y2(ah(t + 1) — ag(t)) K (x2,x2) + b(t) (9.65)

The thresholds by (¢t + 1) and ba(t + 1) are equal when they are valid. Finally,
when both multipliers are at bound and if M and N are not equal, SMO select
as new threshold the mean between by (¢ + 1) and by (¢ + 1).

9.3.5 Other Optimization Algorithms

Alternative optimization approaches have been developed. Keerthi et al. [46]
have proposed a very effective binary classification algorithm based on the
dual geometry of finding the two closest points in the convex hulls. These
approaches have been particularly effective for linear SVM problems.

The Lagrangian SVM (LSVM) method of Mangasarian and Musicant [55]
reformulates the classification problem as an unconstrained optimization task
and then solves the problem using an algorithm which only requires the solu-
tion of systems of linear equalities. LSVM uses a method based on the Sherman
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Morrison Woodbury formula which only requires solution of systems of linear
equalities.

Finally it is worth mentioning the interior-point [27] and semi-smooth
support vector [28] methods of Ferris and Munson that seem quite effective in
solving linear classification problems with huge training sets.

9.3.6 SVM and Regularization Methods*

In this section, which is addressed to an experienced reader, we discuss SVM
in the framework of the theory of regularization [81][82]. The theory of reg-
ularization provides an effective method, the regularization method, to solve
the so-called ill-posed problems. A well-posed problem in the Hadamard sense
[38] is a problem whose solution exists, is unique and continous’. If a problem
is not well-posed, it is ill-posed in the Hadamard sense. In the rest of the book
we adopt the convention of calling ill-posed problems in the Hadamard sense
simply ill-posed problems. The problem of classification is an example of ill-
posed problem. SVM for classification can be considered as a special case of
regularization method. As we have seen at the beginning of this section, the
problem of classification consists in estimating a function f : R™ — +1 using
training set patterns

(x1,91), -, (xe,y¢) € R" x £1 (9.66)

In the framework of the theory of the regularization, the problem of the clas-
sification can be represented in terms of the following minimization problem:

14

min ZL(yi,ﬂxi)) +CJ(f) (9.67)

fer

where L(y;, f(x;)) and J(f) are respectively a loss function (e.g. zero-one
loss function) (see Chapter 5) and a penalty functional. H is the space of
functions where the penalty functional is defined. C' > 0 is called, in the
theory of regularization, reqularization costant and determines the trade-off
between the loss function and the penalty term. Now, we assume that the
penalty functional assumes the form

s 2
J(f) = / i 1;((3 ds, (9.68)

where F is the Fourier transform of f and G is a positive function that G(s) —
0 as [|s|| — oo.

It is possible to show [37] that, using a few additional hypotheses, the
solution (9.67) is

" In [86] the continuity requirement is replaced with the stability.
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K ¢
f(x)= Zﬂjwj(x) + Z 0,G(x — x;), (9.69)

i=1

where 9; span the null space of the functional J and G is the inverse Fourier
transform of G. In this framework powerful statistical approximation methods
such as smoothing splines and thin-plate splines [39] can be included. Another
subfamily of regularization methods can be obtained by means of a Mercer
kernel K (x,y) and the associated space of function H g which is a reproducing
kernel Hilbert space (RKHS) (see Appendix D). In this case we can express the
penalty functional J of Equation (9.67). We provide a simplified description
of this family of methods. The reader who is interested to this topic can refer
o [24] [37] [92].

Assume that the kernel K (-) can be expressed in terms of its eigenfunctions
1;, that is

K(x,y) = > 2595 (30 (y) (9.70)

o]
with v; > 0 and Z’YZQ < 0.
j=1
In similar way, the elements of RKHS Hy can be expressed in terms of
the eigenfunctions v;(-), that is:

F) =Y ei(x) (9.71)
j=1
with the constraint (by definition) that
o .2
11 =D 2 < o0 (9.72)
=1

where |||+, is defined as the norm induced by the kernel K.
In this framework the penalty functional J(f) (9.67) is assumed to be:

J(F) = 1150 (9.73)
Substituting (9.73) in (9.67) we get:
¢

foin ;L(yi,f(xi))ﬂLCHfII%K : (9.74)

Plugging (9.72) in (9.74) we obtain:

£ 0o oo 2
min ZL(yi,chwj(xi)) —&—CZC—]' . (9.75)
j=1 =17

{Cj}l i=1
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It can be proven [92] that the solution of (9.74) is finite-dimensional, that is:
N

Fx) = 0 K(x,x;). (9.76)
j=1

The function g;(x) = K(x,x;), viewed as function of a unique argument x, is
called the representer of evaluation at x; in Hg, since for each f € Hx we
have (see Appendix D):

<K('7Xi)7 f>HK = f(xz) (977)

In analogous way, using the reproducing property of Hg, the penalty func-
tional J(f) becomes:

N N

T(f) = K(xi,xj)aia;. (9.78)

i=1 j=1

Therefore the infinite-dimensional problem (9.74) can be transformed, using
a vector notation, in the easier finite-dimensional problem:

min L(y, Ka) + Ca’ Ka (9.79)
o

where y = (y1,...,yn), @ = (a1,...,ay) and the K is the Gram matrix
whose ij element is given by K (z;,x;).

Support vector machines falls in the framework above described. Finally,
we remark that the capacity of transforming the infinite-dimensional problem
in a finite-dimensional problem is often called, in the kernel methods literature,
the kernel property.

9.4 Multiclass Support Vector Machines

Support vector machines are binary classifiers. To use SVM when the number
of classes K is larger than 2, some methods have been proposed [40].

9.4.1 One-versus-Rest Method

The first method is the one-versus-rest (o-v-r) method [74] uses a winner
takes all strategy. A classifier is trained for each of the K classes against all
the other classes. More formally, the o-v-r method consists of training K SVM
classifiers f; by labeling all training points having y; = j with +1 and y; # j
with —1 during the training of the j** classifier. In the test stage, the final
decision function F(+) is given by

F(x) = arg max fi(x). (9.80)

The computational complexity of the o-v-r method is given by O(K¢?) where
{ is the cardinality of the training set.
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9.4.2 One-versus-One Method

The second method for constructing a multiclass support vector machines is
the one-versus-one (0-v-0) method and uses a wvoting strategy. The method
consists in learning W) classifiers. We call f;; (with 1 <14 < j < K) the
classifier trained ony by the training samples which belong to the classes @
and j, labeled respectively with +1 and —1. In the learning phase all f;; are
trained. In test phase, for each sample x the win frequence w; for the class ¢
is computed by testing f;; on the sample x for all j. In this way, we obtain a
vector w = (w1,...,w;,...,wk) which expresses the win frequences of each
class. Finally, the most frequent class is chosen, that is

F(x) = arg max w (x). (9.81)

9.4.3 Other Methods

In addition to the o-v-0 and o-v-r methods, several strategies for combining the
binary SVM classifiers have been proposed. Among them we quote DAGSVM
and the tennis tournament method. DAGSVM [67] consists of making a di-
rected acyclic graph (DAG) of consecutive binary classifications. In this way a
class hierarchy can be built. The final decisions are stored in the graph leaves
that are obtained by exclusion. The tennis tournament method [69] produces
a binary decision tree where each node is a SVM binary classifier. The deci-
sion is fixed on the basis of the rules of a tennis tournament. Therefore each
class is considered a player and the winner of the match, decided on the basis
of the collection of SVM pairwise classifiers trained previously, is propagated
to the upper level of the tree where he will play the next match. The algo-
rithm terminates when the root of the decision tree is reached, assigning to
the unknown pattern the class which has won the last match.

9.5 Support Vector Machines for Regression

In this section, we extend the approach used in support vector machine for
classification to the case of the regression. Whereas in the classification the
output y assumes only two values (y € {£1}), in the regression task the
output is a real, i.e. y € R. In the regression task the underlying idea is to
define a loss function that ignored errors that were within a certain distance
of the true value. This type of function is referred to as an e-insensitive loss
function.

Definition 24 Given a data set D = {(x;,¥:),-.., (xe,ye)} € R" xR and a
function f : X CR™ — R, the linear e-insensitive loss function L¢(z,y, f)
1s defined by
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—€ €

Fig. 9.3. The plot of the linear e-insensitive loss function

0 otherwise.

LG(X,y,f) _ |y—f(x)\e _ { |y*f(X)| Zf‘y*f(xﬂ > 6} (9.82)

where x € X and y € R. In an analogous way, the quadratic e-insensitive
loss function is defined by

L) =l - £t = { [y IO ERIT A sy

otherwise.

Figure 9.3 shows the plot of the linear e-insensitive loss function. The idea
behind the e-insensitive loss function is shown in the Figure 9.4. The dotted
curves delimitate a a tube of size 2e around the function f(z) and any data
point outside this tube, the white circles, has a loss function not null and can
be viewed as a training error. Vice versa, for the data points in the band, the
black circles, the loss function is null. The above-mentioned approach is called
the e-SV regression [85] and is the most common approach to SV regression,
though not the only one [86].

9.5.1 Regression with Quadratic e-Insensitive Loss

We discuss support vector machines for regression in the case of quadratic
e-insensitive loss. Given a data set D = {(Xi,¥4i),. .-, (X¢,y¢)}, we want to
estimate a function f : R™ — R. If we assume that f(-) is linear, i.e. is an
hyperplane than it can be described by:

f(x)=(w-x)+0b. (9.84)
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Fig. 9.4. The dotted curves delimitate a tube of size 2¢ around the function f(x).
For the data points outside the tube the loss function is not null.

To solve this problem, we use the same approach of the optimal hyperplane
algorithm. Therefore we minimize the following functional:

l
r(w) = gl + O3y, £x0) (9.85)

=1

where w and C have the same meaning of the case of the classification task.

Comparing Equation (9.85) with (9.48) we note that we have replaced
the term that expresses the number of errors in the classification with the
quadratic e-insensitive loss. The regularization constant C' manages the trade-
off between the loss function and the the margin of the hyperplane. As in the
case of the classification task, it is possible to write a constrained optimization
problem defined as follows:

L
min |[[w]*+C) (&7 + &) (9.86)

WS i=1
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subject to yi — (W x;)+b) <e+§ i=1,...,¢
(W-x;) +b) —y; <e+§ i=1,...,0
& >0 i=1,...,0
& >0 i=1,....¢
&éi=0 i=1,...,0, (9.87)

where we have introduced, unlike the classification task, two slack variables
& and fl The first variable &; is strictly positive when the respective pattern
(xi, ;i) is such that f(x;) —y; > €. The second variable & is strictly positive
when the respective pattern (x;,y;) is such that y; — f(x;) — y; > €.

The conditional optimization problem can be solved by the usual tech-
niques, i.e. the Lagrange Multipliers and the Kuhn Tucker Theorem, taking
into account that (9.87) induces, for the corresponding Lagrange multipliers
«; and &; the relation

Hence we get the following objective function to maximize
¢ I
Wi, ) = yilai — ) — €Y (o + &)
i=1 i=1
1 o 1
32 ((ai = ) ey — &)(xi - x5) + Cém) (9.89)
ij=1
¢ ¢
subject to Z G; = Z «;
i=1 i=1
aiz() Z'Zl,...,g
a; >0 i=1,...,¢, (9.90)
where o = (1. .., ), & = (&1,...,4y) and §;; is the Kronecker symbol.®
The corresponding KKT conditions are
Gi((wW-xi)+b) —yi—e—&) =0 i=1,...,¢
al(ylf((wxl)+b)feffz):0 1= ,,E
& =0 i=1,...,0

If we define 8 = a — &, Equation (9.89) assumes a form similar to the classi-
fication case

14

£ ¢ 4
max} yih — )|l - SIS B+ 0) (992)
=1 =1

i=1 j=1

8 8, is 1if i = j, 0 otherwise.
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¢
subject to Z G; =0 i=1,...,L (9.93)
i=1

Like in the case of the classification, we can empowering the algorithm, using
the kernel trick, i.e substituting in (9.92) the dot products (x; - x;) with
K (x;,x;) where K(-) is an appropriate Mercer kernel, we get

¢ ¢ ¢ ¢
mgXZ yili — ey |6l - % DO BB (K(xi,x;) + é@'j) (9.94)
i=1 i=1

i=1 j=1

¢
subject to Z G; =0 i1=1,..., L (9.95)
i=1

Then the regression estimate, i.e. the function f(-) modelling the data, as-
sumes the form:

¢
Fx) = BiK(xix) +b (9.96)
i=1
where b can be chosen so that
_ Bi
fo6) —yi=—e— 7 (9.97)

for any support vector x;.

9.5.2 Kernel Ridge Regression

We consider again the final formulation of the regression with quadratic e-
insensitive loss, i.e.

4 4 14 L
mex > yiBi—eY |8 - % DO BB K (xi,x;) + %5@' (9.98)
=1 i=1

i=1 j=1

¢
subject to Z G;i =0 1=1,... L (9.99)
i=1

It is necessary to make some remarks. When € # 0, we introduce an extra
weight factor involving the dual parameters. On the other hand, when e is
null the problem corresponds to considering standard least squares linear re-
gression with a weight decay factor controlled by the regularization constant
C. This approach to regression is also known as ridge regression, and it is
equivalent to techniques derived from Gaussian processes, that we will ex-
amine in Section 9.6. First of all, we ignore the bias term b, since Gaussian
processes do not consider the bias term. Therefore we consider the problem
that can be stated as follows:
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¢
. 2 2
min AwlP + 3¢
subject to yi— (W x;) =& 1=1,...,0. (9.100)

Hence we derive the Lagrangian:

L(w, ¢, o /\HWH2+Z£2+Z% yi — (W x;) — &). (9.101)

According to the optimality conditions

o, L

=0, (9.102)

we get

we > aix; (9.103)
& = —. (9.104)

Plugging in (9.101) we have:

¢ ¢
1
max W (« manylaz By Z Z%‘%‘(Xi X)) — Z||04||2 (9.105)

(e .
i=1 j=1

and using the kernel trick, i.e. substituting (x;,x;) with the kernel K(x;,x;)
where K (-) is an appropriate Mercer kernel, we get the final form:

2
max W(a maunylozz 4)\220"0@ (x4,%5) f||a||. (9.106)

e
=1 j=1

Equation (9.106) can be rewritten in matricial form

1 1
W)=y a - ﬁaTKa - ZaTa (9.107)
where y and x are the vectors formed, respectively, by y; and x; and K is the
Gram matrix whose generic element K;; = K (x;,x;).
If we impose

ow
—-— = 1
Y 0, (9 08)
we get
1
——]Ka— —a+y=0. (9.109)

2\ 2
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Hence
a = 2\(K+ )"ty (9.110)

where I is the identity matrix.
The corresponding regression function is:

f(x) =yT(K + A\)7'K (9.111)

where K is the vector whose generic element is K; = K(x;,x).

9.5.3 Regression with Linear e-Insensitive Loss

We discuss SVMs for regression in the case of linear e-insensitive loss. Given a
data set D = {(xi,¥i),- .-, (Xe,ye) }, we want to estimate a function f : R™ —
R. If we use the linear e-insensitive loss, we have to replace in the equation
(9.85) the quadratic loss with the linear one. Therefore we have to minimize
the following functional:

14
r(w) = ol + €3 Iy, Fx)l (9112)

i=1

where w and C' have the same meaning of the case of the quadratic loss. As in
the case of the quadratic loss, it is possible to write a constrained optimization
problem defined as follows:

¢
NE )
min | [|wl| +C;(§i+fi) (9.113)
subject to yi— (W -x;)+b) <e+§& i=1,...,¢
((W‘Xi)+b)*yi§€+€i i=1,...,¢
§& >0 i=1,...,¢
&>0 i=1,...,0(9.114)

Plugging the conditions in the equation (9.113) we get the following objective
function to maximize

L L

4
W, ) = yilai—d;) —€ > (o + ) —% D (i —di)(ay — ) (xi - x;)
=1

i=1 ij=1

¢ 0
subject to Zdi = Zai
i=1 i=1
0<a; <C i1=1,...,¢
0<q; <C 1=1,...,L
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Using the kernel trick we get finally:

¢ ¢ ¢
. . R 1 R R
W(o, &) =Y yilai—di)—e Y (ai+d;)— 5 D (=) (ay— ) K (xi, %)
i=1 i=1 ij=1
(9.116)
¢ ¢
subject to Z G; = Zai
i=1 i=1
OSOQSC iil,...,g
0<a <C i=1,...,¢

where K (-) is an appropriate Mercer kernel.

Finally, we have to compute the bias b. In order to do that, we consider
KKT conditions for regression. Before using the kernel trick, KKT conditions
are

ai(e+& —yi+(W-x;)+b) =0 (9.117)
OAéi(G—l—éi—‘ryi—(W'Xi)—b) =0 (9.118)
where
¢

> yilay —d)x; = w (9.119)

j=1
(C—a;)§ =0 (9.120)
(C—&;)é = 0. (9.121)

From the latter conditions we see that only when a; = C or &; = C the slack
variables are non-null. These samples of the training set correspond to points
outside the e-insensitive tube. Hence from the equation (9.119) we can find the
bias from a non-bound example with 0 < «; < C using b = y; — (W - x;) — €
and similarly for 0 < &; < C we can obtain it from b = y; — (W - x;) + €.
Though the bias b can be obtained using only one sample of the training set,
it is better estimating the bias using an average over all points on the margin.

9.5.4 Other Approaches to Support Vector Regression

Apart from the formulations given here it is possible to define other loss
functions giving rise to different dual objective functions. In addition, rather
than specifying € a priori it is possible to specify an upper bound v (0 < v <
1) on the fraction of the points lying outside the band and then find e by
optimizing over the primal objective function

)4
Slwli? + ¢ <uze 3 - f(xi>|) (9.122)

i=1
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with € acting as an additional parameter to minimize over [75].
As for classification it is possible to formulate a linear programming ap-
proach to regression with [93]

min Zaz—FZaZ—i—Zfﬁ-Z& (9.123)

a,6,¢,€
subject to
4
yi—e—ﬁig Z(Oéj—@j)K(Xi,Xj) +b§yi+€+§i- (9124)
j=1

Minimizing the sum of the «; approximatively minimizes the number of sup-
port vectors which favours sparse hypotheses with smooth functional approx-
imations of the data. This approach does not require that K(-) is a Mercer
kernel [93].

9.6 Gaussian Processes

Gaussian processes [71] are an emerging branch of kernel methods. Unlike
SVMs, that are designed to solve mainly classification problems, Gaussian
processes are designed to solve essentially regression problems. Although there
are some attempts [95] of using Gaussian processes for classification, the
problem of solving a classification task with Gaussian processes, remains still
opened.

Gaussian processes are not a novelty. In [56] a framework for regression
using optimal linear estimators, within the geostatistics field, was proposed.
The framework, called kriging in honour of a South African mining engi-
neer, is identical to Gaussian processes, currently used in machine learning.
Kriging [18] has been developed considerably in the last thirty years in geo-
statistics, even the been model has been developed mainly on the solution of
low-dimensional problems, at most problems in R3.

Machine learning community ignored completely Gaussian processes until
found them out again. it was argued , that is no reason to believe that, for
real problems, neural networks should be limited to nets containing only a
small number of hidden nodes. A neural network model with a huge number
of nodes, cannot be trained with a backpropagation algorithm, based on maz-
imum likelihood algorithm [23][34] (see Chapter 5), since the trained neural
net overfits the data.

In [61] the net behavior when the number of hidden nodes goes to infinity
was investigated, and was showed that it can get good performances using the
Bayesian learning [53], instead of maximum likelihood strategy.

In the Bayesian approach to neural networks a prior distribution over the
weights induces a prior distribution over functions. This prior is combined
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with a noise model, which specifies the probability of observing the targets t;
given function values y;, to yield a posterior over functions which can then be
used for predictions.

In [61] it was proven that the multilayer perceptron [6] (see Chapter 8), will
converge to a Gaussian process prior when its number of hidden nodes goes
to the infinity. Although infinite networks are a method of creating Gaussian
process, it is also possible to specify them directly using parametric forms for
the mean and covariance functions. The advantage of the Gaussian process
formulation, in comparison with infinite networks, is that the integrations,
which have to be approximated for neural nets, can be carried out exactly,
using matrix computations. In the following section it is described how can
make regression by means of Gaussian processes.

9.6.1 Regression with Gaussian Processes

A stochastic process is a collection of random variables {Y(x)|x € X} in-
dexed by a set X C R”™. The stochastic process is specified by giving the
probability distribution for every finite subsets of variables Y(x1),...,Y (xx)
in a consistent manner.

A Gaussian process is a stochastic process which can be fully specified
by its mean function u(x) = E[Y (x)] and its covariance function C(x,x’") =
E(Y(x) — p(x))(Y(x") — p(x))]; it will have a joint multivariate gaussian
distribution.

In this section we consider Gaussian processes which have p(x) = 0. This
is the case for many neural networks priors [61]. Otherwise it assumes that
any known offset has been removed.

Given a prior covariance function Cp(x,x’), which can be defined by any
Mercer Kernel [74], a noise process Cn (x,x’) (with Cn(x,x") = 0 for x # x’)
and a data set D = ((x1,¥1),---,(Xe,9¢)), if x ¢ D is a test point then the

~

respective distribution Y (x) has mean Y (x) and variance o2 (x) given by:

Y(x) =y (Kp + Kn) "kp(x) (9.125)
02(x) = Cp(x,x') + Cn(x,%X") — k5 (x)(Kp + Kn) 'kp(x) (9.126)

where :

[Kplij = Cp(x,x"); [Kn]ij = Cn(x,x");

kP(X) = (CP(Xv Xl)a ceey CP(Xa XZ))T; y = (ylv cee >yn)

The variance % (z) provides a measure of the error that the prediction
yields. If we assume that the variance of the noise process o2 does not depend
by the sample x, we have Ky = ¢2I. Substituting in the previous equations

we have:

Y (x) = y(Kp + 0I) " kp(x) (9.127)
03 (x) = Cp(x,%X') + On(x,X') — KB(X)(Kp + 0°1) " kp(x). (9.128)
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The prediction value in (9.127) is the same that it is possible to obtain
with a Kernel Ridge Regression, see equation (9.111), using the quadratic e-
insensitive loss function. The big difference between Gaussian Processes (GP)
and SVM for Regression is that GP permit computing, unlike SVM, the vari-
ance of the prediction value o2 (x) providing an estimate on the prediction
reliability. This peculiarity makes GP very appealing for applications that
require that a measure of reliability of the prediction values. Examples of
these applications can be found in finance (e.g. portfolio management) and
geostatistics.

9.7 Kernel Fisher Discriminant

In this section we describe kernel Fisher discriminant, namely the generaliza-
tion, in the feature space, of the Fisher discriminant [31].

The Fisher discriminant, also called linear discriminant analysis (LDA),
is a classical feature extraction method (see Chapter 11) and aims to achieve
an optimal linear dimensionality reduction. LDA is widely used in face recog-
nition (see Chapter 13). We pass to describe the algorithm.

9.7.1 Fisher’s Linear Discriminant

Let X1 = (xi,...,x; ) and X5 = (x},...,x7,) be samples from two different
classes and X = X; U X5 = (x1,...,%¢) their union. We define the mean of
the two classes m; and ms:
1 & 1 &
_ 1 _ 2
m; _E;Xj7 mz_E;Xj. (9'129)

Fisher’s linear discriminant is given by the vector w which maximizes

wlSpw
J(w) = W Syw (9.130)
where
SB = (m1 — mg)(ml — mg)T (9131)
Sw= > (x—m)x—m)"+ ) (x—my)(x—my)" (9.132)
x€X xEXo

Sp and Sy are called the between and within class scatter matrices, respec-
tively.

The intuition behind maximizing J(w) is to find a direction that maxi-
mizes the projected class means (the numerator) while minimizing the class
variance in this direction (the denominator).
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If we set 57
we have:
(Wl Spw)S,w = (Wl Syyw)Spw (9.134)

From (9.131) we see that Syw is always in the direction of (mg —m;). We do
not care about the magnitude of w, only its direction. Thus we can drop any
scalar factors in (9.134), we have:

Spyw x (mg —my). (9.135)
Multiplying both sides of (9.135) by S, ! we then obtain
w o S, (my —my). (9.136)

This is known as Fisher’s linear discriminant or linear discriminant analysis
(LDA). Despite its name, LDA is not a discriminant but provides a direction
for projection of the data onto one dimension. For this reason LDA is used as
a feature extraction method, and generally represents an alternative method
to the PCA (see Section 11). Nevertheless, LDA can be used to implement a
linear discriminant. Indeed, the projected data y(x) = w - x can subsequently
used to construct a discriminant, by choosing a threshold 7 so that we classify
a new point as belonging to X; if y(x) > 7 and classify it as belonging to Xs
otherwise. It can prove that the vector w maximizing (9.130) has the same
direction as the discriminant in the corresponding Bayes optimal classifier (see
Chapter 5). Finally, for the sake of completeness, we underline that LDA can
be extended to the where there are more than two classes. In this case, the
algorithm is called multiclass LDA [23].

9.7.2 Fisher Discriminant in Feature Space

Fisher discriminant is a linear algorithm. Therefore it is not effective when the
data distribution is not linear. Fisher discriminant can be enpowered using the
same approach used for the optimal hyperplane algorithm in SVM. First we
map the data nonlinearly into some Feature space F, by means of an appro-
priate Mercer kernel, and then we compute a Fisher’s linear discriminant in
the feature space. In this way, we implicitly perform a nonlinear discriminant
in input space.

Let @ be a nonlinear mapping from the input space to some feature space
F. To find the linear discriminant in F we need to maximize

T od
_WSBW

J(w) (9.137)

— Wl o
wl S§,w

where w € F, S% and Sg}, are the corresponding matrices in F:
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S% = (m{ —m3) - (m{ —m3)" (0.138)
St = Y (@60~ m?) - (060~ m)T + 3 (@(x) - m) - (B(x) - m)T
x€Xy x€eXo
with
t- L5 a0 L P 9.139
m; = E; (Xj)a my = E; (Xj). ( . )

Since the mapping ¢ can be unknown, it is impossible to solve directly the
problem. In order to overcome this difficulty we use the kernel trick, which has
been successfully used in the SVMs. Instead of mapping the data explicitly
we seek a formulation of the algorithm which uses only scalar products (@(x)-
&(y)) of the training patterns which we then replace by an appropriate Mercer
kernel K(x,y).

The theory of RKHS (see Appendix D) states that any solution w € F
must lie in the span of all training samples in F. Therefore we can find an
expansion for w of the form

L
w = Zaié(xi). (9.140)

Using the expansion (9.140) and the definition of m$ and m$ we write

¢y
wlim? = %ZZ%‘K(XJ"X;C) i=1,2

v j=1k=1

=o' M; i=1,2 (9.141)
where we have defined

1o ,

(Ma); = & > K(xj,x},) i=1,2 (9.142)
k=1

and replaced the scalar product by means of the Mercer kernel K (-).
Now we consider the numerator of (9.137). Using (9.138) and (9.141) the
numerator can be rewritten as

wlShw =o' Ma (9.143)

where
M = (M; — My)(M; — My)" (9.144)

We pass to consider the denominator. Using (9.140), the definition of m® and
a similar transformation as in (9.143), we find:

wlStw=a Na (9.145)



242 9 Kernel Methods

where we set
2

N=> PjI—-1,)P (9.146)
j=1
P; is a ¢ x {; matrix with (P, )nm = K(xy,,x7,), I is the identity matrix and
1g is a matrix with all elements —,
Finally combining (9.143) and (9 145), we can find Fisher’s linear discrim-
inant in the feature space F by maximizing

a’Ma

J(a) = ———

(o) al’Na

This problem can be solved by finding the leading eigenvector of N~'M. This
approach is called kernel Fisher discriminant (KFD) [58].

The projection of a new pattern x onto w is given by

(9.147)

Zm (xi,x (9.148)

Obviously, the proposed setting is ill-posed (see Section 9.3.6). We are esti-
mating ¢ dimensional covariance structures from £ samples. Besides, numerical
problems which cause the matrix N not to be positive, we need a way of ca-
pacity control in F. In order to get that, we simply add a multiple of the
identity matrix to IV, i.e. replace N by N, where

N, =N +ul (9.149)

therefore the problem becomes to find the leading eigenvalue of (N,) "' M.

The use of N, brings some advantages: the problem becomes numerically
more stable, since for u large enough N, become positive definite; N, it can
be seen in analogy to [32], decreasing the bias in sample based estimation of
eigenvalues; a regularization on ||a/|? is imposed, favoring solutions with small
expansion coefficients.

9.8 Kernel PCA

In this section we describe kernel principal component analysis (KPCA),
namely the generalization, in the feature space, of the principal component
analysis (PCA). PCA, discussed in detail in Chapter 11.4, is a data dimen-
sionality reduction algorithm that projects the data along the directions of
maximal variance. Kernel PCA uses the same approach of SVM and kernel
Fisher discriminant. First it projects data in a feature space, by means an
appropriate Mercer kernel. Then it performs in the feature space the PCA
algorithm. We pass to describe kernel PCA in detail.

Let X = (x1,...,%¢) be a data set of points in R", KPCA algorithm
consists of the following steps:
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1. The Gram matrix G is created. G is a square matrix of rank ¢, whose
generic element is G;; = K(x;,%;) where x;,x; € X and K is an appro-
priate Mercer kernel.

2. The matrix G = (I — 1,)G(I — 1;) is computed. Where T is the identity
matrix of rank ¢ and 1, is a square matrix of rank ¢ whose elements are
equal to %.

3. Eigenvalues and eigenvectors of matrix G are computed.

The meaning of each step of KPCA is the following.

The first step of KPCA maps implicitly the data into a feature space F by
means of a nonlinear mapping &; second step is performed in order to assure
that the data projections have zero mean; last step projects the data along
the directions of maximal variance in the feature space F.

9.8.1 Centering in Feature Space

In this subsection we show that the computation of G assures that the data
projections in feature space have zero mean, i.e.

L

> B(x;) =0 (9.150)

i=1

In order to show that, we note that for any mapping ¢ and for any data set
X = (x1,...,X¢, the points

B(x;) = D(x;) — % > b(x)) (9.151)

i=1

will have zero mean in the feature space.
Hence we go on defining covariance matrix and dot product matrix K =

?(x;)TP(x;) in the feature space F.
We arrive at the eigenvalue problem

Ao = Ka (9.152)

with & that is the expansion coefficients of an eigenvector in the feature space
F, in terms of the points @(x;), i.e.

4
V=> adx;). (9.153)
=1

Since @ can be unknown, we cannot compute K directly; however, we can
express it in terms of its noncentered counterpart K.

We consider G;; = K(x;,%;) = @(x;)T®(x;) and we make use of the
notation 1;; = 1 for all 4, j. We have:
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Kij = $(xi)" d(x;)
1 ‘ 1 ’
= @) = 5 Y Pon)T (@) = 5 D Ploxm)

m=1 m=1
4

V4 14
= B0x) PO~ D Poem) Poe) = ) BOxa) g D Plxm) Blxn)
m=1 n=1 m,n=1
14

4 4
1 1 1
= Gij — 7 E LimGmj — 7 E 1njGmj + 7z E 1imGmnln; (9.154)

n=1 n=1 n,m=1
If we define the matrix (1¢);; = 4 and I the Identity matrix, we have:

Kij = G — 1,G — G1, + 1,G1,
=1G - 1,G+ (1,G — G)1,
= (1-1,)G + (1,G — IG)1,
= (- 1,)GI - (I - 1,)G1,
=([-1)G(I-1,)
Sy (9.155)

An immediate result, since the projections of data are zero mean, is the fol-
lowing:

Remark 1 The matriz G is singular.

Proof. The elements of the matrix C'=1—1, are equal to 1 — % if they are on
the diagonal, Otherwise they are equal to —%. If we sum the rows of C' we get
the null row. Therefore the determinant of C' is null since its rows are linearly
dependent. The determinant of G is also null, for Binet [47] theorem. Hence
G is singular and has at least one null eigenvalue.

The remark implies that at least the last eigenvector, i.e the eigenvector as-
sociated to the smallest eigenvalue, must be discarded. Besides, the remark
provides a requirement, that is the smallest eigenvalue of G is null, that the
eigenvalue spectrum should satisfy. The computation of eigenvalues and eigen-
vector of G requires the matrix diagonalization, that can be computationally
cumbersome when the rank of G is high.

In [73] a computationally efficient method, based on the EM algorithm
[20], has been proposed for extract eigenvalues and eigenvectors. The algo-
rithm seems to overcome the above mentioned bottleneck. Finally, if KPCA
is performed with the Gaussian kernel (GKPCA), a theoretical result has been
established. In [84] It has been proven that GKPCA, in the case of an infinite
number of data points, approaches to PCA, for large values of the variance o.
Finally, we conclude the section remarkin that kernel PCA is widely used, as
feature extraction method, in face recognition (see Chapter 13).
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P ~ [ )

Fig. 9.5. The dotted circle encloses almost data points of the figure, i.e. all the data
with the exception of the two outliers.

9.9 One-Class SVM

One-class SVM [77] [80] is a unsupervised kernel method based on support
vector description of a data set. In One-class SVM there are no negative
examples; therefore all data are considered positive examples. One-class SVM
has been initially proposed to estimate the support distribution function of a
data set, i.e. a function that takes positive value 4+1 in the region that contains
most data and -1 otherwise. For this reason, One Class SVM is generally
applied to solve nowvelty detection problems [3] and to detect outliers. The
aim of One-class SVM is to look for the smallest sphere enclosing almost all
images, in the feature space, of data points, i.e all images without the outliers
(see figure 9.5). Let X = (x1,...,%x¢)) C R” be a data set. Using a nonlinear
transformation @ from the input space to some high-dimensional feature space
F, it looks for the smallest enclosing sphere of radius R. This is described by
the constraints:

|8(x;) — a2 < R? ¥ (9.156)

where || - || is the Euclidean norm and a is the center of the sphere.
The constraints can be relaxed using slack variables &;:

|0(x,) —al|* < R*+¢; (9.157)

with &5 > 0.
In order to solve the problem the Lagrangian is introduced:

14

L=R =Y (R*+¢—|o(x;) —al*)B Z@;WCZ@ (9.158)

=1

where 3; > 0 and p; > 0 are Lagrange multipliers, C' is a constant and
¢

CZ §; is a penalty term.
j=1
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If we put
JL oL JL
55 =0 52 =0 8—@50 (9.159)
we get
J4
> Bi=1 (9.160)
j=1
J4
a=>Y Bo(x;) (9.161)
j=1

B =C — ;. (9.162)
The Karush-Kuhn Tucker conditions yield

&ipg =0 (9-163)

(R® +& — |2(x;) —al*)B; = 0. (9.164)

It follows from (9.164) that the image of a point x; with {; > 0 and 8; > 0 lies
outside the feature space sphere. Equation (9.163) states that such a point has
w; = 0, hence we conclude from Equation (9.162) that 8; = C. This will be
called a bounded support vector (BSV). A point x; with &; = 0 is mapped to
the inside or to the surface of the feature space sphere. If its 0 < §; < C' then
(9.164) implies that its image @(x;) lies on the surface of the feature space
sphere. Such a point will be referred to as a support vector (SV). support
vectors lie on cluster boundaries, BSVs lie outside the boundaries and all
other points lie inside them. The constraint (9.160) implies when C' > 1 no
BSVs exist. Using these relations we may eliminate the variables R, a and
{5, turning the Lagrangian into the Wolfe dual form that is a function of the
variables (3;:

4

14 14
W= "0(x;)°8;— > > BiBiP(x) - B(x;). (9.165)

j=1 i=1 j=1

Since the variables 1; do not appear in the Lagrangian they may be replaced
with the constraints:

0<8;,<C j=1,...,L (9.166)

We compute the dot products @(x;) - $(x;) by an appropriate Mercer kernel
G(x;,x;). Therefore the Lagrangian W becomes

L L

L
WZZG(XJ,XJ>ﬁ] —Z 6iﬁjG<Xi;Xj)- (9167)

j=1 i=1 j=1
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At each point x the distance D of its image in the feature space from the
center of the sphere is given by :

D?(x) = ||&(x) — a||*. (9.168)
Using (9.161) we have:

4 4 4
D*(x) = G(x,x) — 2 Z BiG(x;, %) + Y Y BiBiG(xi, x;). (9.169)

i=1 j=1

The radius of the sphere R is just the distance between a support vector and
the center a.

9.9.1 One-Class SVM Optimization

In the previous section we have just formulated the support vector machines
using a problem of quadratic programming. The problem can be solved using
QP packages when the dimension of the training set is quite limited. In other
cases, the best solution is to use a modified version of SMO (see Section
9.3.4) [77].

The strategy of SMO is to break up the constrained minimization of (9.167)
into the smallest optimization step possible. Due to the constraint on the sum
of the dual variables, it is impossible to modify individual variables separately
without possibly violating the constraint. Therefore the optimization has to be
performed over pairs of multipliers. The algorithm is based on an elementary
optimization step.

Elementary Optimization Step

For instance, consider optimizing over a; and as with all other variables fixed.
If we define G;; = G(x4,x;), Equation (9.167) becomes:

2 2 2
1
O‘I?’lolélz 5 Z Z Oéi()leij + Z a;C; + C, (9170)
=1 j=1 =1
where
4 0 l
Ci = ZajGij, C = Z ZaiajGij (9171)
=3 i—3 j—3
subject to
1
< < = 172
0 S o S ol (9 7 )
1
< < — 1
0 S O S ol (9 73)
2 3

dai=A=1-) o (9.174)
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We discard C, which is independent of a;; and as, and eliminate a to obtain

. 1 1
min W(a2)=§ (A—OZQ)Z G+ (A—Oég) asGia + §a§G22 + (A—Oég) Ch1 4+ asCs.

oo
(9.175)
Computing the derivative of W and setting it to zero, we have:
—(A = a2)G11 + (A = 2a2) G2 + a2Gas — Cy + Cy = 0. (9.176)
Solving the equation for as, we get:
A(G11 — G C; —-C
Qg = (Gu 12) + Gy 2 (9.177)

G114+ Gz — 2G2
Once «» is found, a; can be recovered from oy = A — a. If the new point

1
(a1, ag) is outside of [0, } , the constrained optimum is found by projecting

vl
ag from (9.177) into the region allowed by the constraints and recomputing
a1. The offset is recomputed after every such step. Additional insight can be
obtained by rewriting the last equation in terms of the outputs of the kernel
expansion on the examples x; and x5 before the optimization step.
Let o7, af denote the values of their Lagrange parameters before the step.
Then the corresponding outputs

O; = Gliaf + Ggiag + C;. (9178)

Using the latter to eliminate the C;, we end up with an update equation for
o which does not explicitly depend on af,
0O, -0
o + 1 2 ,
G11 + G2z — 2G12

Qg = (9.179)
which shows that the update is essentially the fraction of first and second
derivative of the objective function along the direction of the constraint satis-
faction. Clearly, the same elementary optimization step can be applied to any
pair of two variables, not just a; and as. We next briefly describe how to do
the overall optimization.

SMO Optimization Algorithm

The inizialization of the algorithm is the following. We start by setting a

1
random fraction v of all a; to A If v/ is not an integer, then one of the
v
¢
. . 1 .
examples is set to a value in (0, g) to ensure that E «; = 1. Besides, we
v
i=1
set the initial p to

= O;. 9.180
P= max (9.180)



9.10 Kernel Clustering Methods 249

Then we select a first variable for the elementary optimization step in one of
the two following ways. Here, we use the shorthand SV,; for the indices of
variables which are not at bound, i.e.

1
San:{i:iE [Z],O<ai<€}. (9.181)
v
These correspond to points that will sit exactly on the hyperplane, that will
therefore have a strong influence on its precise position. The couple of the pa-
rameters on which applying the elementary optimization algorithm is selected
by using the following heuristics:

1. We scan over the entire dataset until we find a variable violating a KKT
condition, i.e. a point such that

(OZ — p)ai > 0, (9182)

or

1
(p — Ol) < — Oéi> > 0. (9183)
vl
Once we have found one, say «;, we pick «; according to:

j=arg max |O0; — Oy (9.184)

2. The same as the above item, but the scan is only performed over SV,;.

One scan of the first type is followed by multiple scans of the second type.
If the first type scan finds no KKT violations, the optimization terminates.
In unusual circumstances, the choice heuristic cannot make positive progress.
Therefore, a hierarchy of other choice heuristics is applied to ensure positive
progress. These other heuristics are the same as in the case of classification.
SMO usually converges in most cases. However to ensure convergence, even
in rare pathological conditions, the algorithm can be modified slightly [45].

9.10 Kernel Clustering Methods

In this section we present some clustering methods based on kernels. We
describe the kernel extension of K-Means, the so-called kernel K-Means, some
extensions of one-class SVM and spectral clustering methods.

9.10.1 Kernel K-Means

In this section we describe how the classical algorithm K-Means (see Chap-
ter 6) can be reformulated in the feature space. In this section we use the
formalism proposed by [9]. Given a data set X = (x3,...,%x¢) C R", we map
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our data in some Feature Space F, by means a nonlinear map ¢. We call the
set A = (ay,...,ax) feature space codebook since in our representation the
centers in the feature space play the same role of the codebook (see Chapter
6) in the input space. In analogy with the codevectors in the input space, we
define for each center a. its Voronoi region and Voronoi set in feature space.
The Voronoi region in feature space (FR.) of the center a. is the set of all
vectors in F for which a, is the closest vector

FR.={¢ € F | c=argmin [I€ - ay]]}. (9.185)
J

The Voronoi Set in feature space (FV,) of the center a, is the set of all vectors
x; in X such that a. is the closest vector for their images &(x;) in the feature
space

FV, = {xi € X | e = argmin |#(x,) — a]]} (9.186)

These definitions induce a Voronoi tessellation of the feature space. It is also
possible to define the empirical quantization error in feature space defined by:

JAX) =30 3 (960 — ail? (9.187)

i=1 xeFV;
We pass to describe Kernel K-Means which has the following steps:

1. Project the data set X into a feature space F by means a mapping &.
Initialize the feature space Codebook A.

2. Compute for each center a; its feature Voronoi set F'V;.

3. Update each center with the mean of its feature Voronoi set, that is

1
a=— 3 x) (9.188)
TR 2

4. Go tostep 2 if any a; changes otherwise return the feature space codebook.

Kernel K-Means minimizes the empirical quantization error in feature space.
It is necessary to remark that even we do not know the @ we are always able
to compute the Voronoi set in the feature space. In fact the distance between
any center and any sample X, using the kernel trick is given by:

K K K
1B(x) — a;]|* = K(x,%) = 2> G(x,%,) = »_ > G(Xs,%y) (9.189)

r=1 r=1s=1

where G(-) is an appropriate Mercer kernel.

The term kernel K-Means has been used in several contexts. In [76] this
term was used, for the first time, for an algorithm which we will discuss in
Section 9.10.3. In [36] a different formulation for kernel K-Means has been
proposed. A typical formalism of fuzzy clustering algorithms (See Section 6.8)
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has been used, i.e. ¢ denotes the number of the codevectors and a membership
matriz U has been introduced. Each element u;; denotes the membership of
the sample x; to the feature Voronoi set F'V;. The algorithm tries to minimizes
the empirical quantization error in feature space which rewritten as :

J(A,X,U) ZZUWH@ x;) — a2 (9.190)

=1 j=1

The minimization technique used by [36] is deterministic annealing [72] which
is a stochastic method for optimization. The minimization algorithm provides
the following membership matrix:
2
uij _ Cexp( 5”Xl a]” ) . (9191)
S exp(—Alx — a )

The parameter 3 € R controls the softness of the membership during the opti-
mization and can be thought proportional to the inverse of the temperature of
a physical system. This parameter is gradually increased during the annealing
and at the end of the procedure the memberships have become crisp (see Sec-
tion 6.8) and therefore a tesselation in feature space is produced. This linear
partitioning in F, back to the input space, forms a nonlinear partitioning of
the input space.

9.10.2 One-Class SVM Extensions

In this section we present two extensions of one-class SVM which have been
proposed for clustering.

Support Vector Clustering

Support vector clustering (SVC') [4] is an extension of one-class SVM. SVC is
composed of two steps. The first step of SVC consists in performing One Class
SVM. The second step of SVC is a cluster assignment procedure, based on a
geometric idea. Any path connecting a pair of points belonging to different
clusters must exit from the sphere in the feature space. These paths have a
segment of points s such that R(s) > R. Let Y be the path connecting two
points in the feature space, the following adjacency relation can be defined:

v { 1if R(s) < R} (9.192)

0 otherwise.

Clusters are provided by the connected components of the graph whose ad-
jacency matrix is defined by (9.192). Recently, some modifications [96][50] of
the labelling procedure, which seems to improve the performances, have been
proposed. Finally, an improved version of the SVC algorithm applied to the
handwritten recognition has been proposed in [14].
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Camastra Verri Algorithm

Another technique that combines one-class SVM and K-Means has been pro-
posed in [9]. This method, called for the sake of simplicity the Camastra
Verri algorithm, considers a codebook in feature space and uses a K-Means-
like strategy, that is moves the centers a; of the codebook in the feature space
computing one-class SVM on their Voronoi sets F'V; until no center changes
anymore.

To make robust the algorithm with respect to the outliers one-class SVM,
which we call for simplicity 1-SVM, is computed on F'V,(p) of each center a..
FV.(p) is defined as

FV.(p) ={x; € FV. and |P(x;) —a.|| < p} (9.193)

FV.(p) is the Voronoi set in the feature space of the center a, without outliers,

that is the images of data points whose distance from the center is larger

than p. The parameter p can be set up using model selection techniques [6].
Camastra Verri algorithm has the following steps:

1. Project the data set X into a feature space F, by means a nonlinear
mapping &. Initialize the centersa, c¢=1,...,. K a.€eF

2. Compute for each center a. FV.(p)

3. Apply one-class SVM to each F'V.(p) and assign to a. the center yielded,
ie. a. = 1SVM(FV.(p))

4. Go to step 2 until any a. changes

5. Return the feature space codebook.

The second step is the expectation stage of an EM algorithm. With regard
to the third step, when the constant C' is taken not lower than 1, one-class
SVM computes the smallest ball that encloses all data. Intuitively under this
condition the third step is the maximization stage of an EM algorithm and the
algorithm convergence is guaranteed, since each EM algorithm is convergent.
Besides, the authors claims that the algorithm, with C' > 1 and a p fixed
during the different iterations, has always converged in all experiments.

9.10.3 Spectral Clustering

Finally, we conclude the section on kernel methods describing briefly spectral
clustering methods. Although these have not been developed in the framework
of the kernel methods, they have strong connections with them. It has been
shown [22][21] that spectral clustering, under given conditions, is perfectly
equivalent to kernel K-Means. For this reason, it is convenient that spectral
clustering methods are included in the family of kernel methods for clustering.

Spectral clustering methods [2][7][19][30][43][57][62] [79] have a strong
connections with the graph theory. Spectral clustering methods have widely
applied into several applicative domains (e.g. image segmentation [79] and
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Fig. 9.6. Camastra and Verri algorithm applied to a nonlinear separable data set.
The black and the grey curves delimitate the two feature Voronoi sets produced by
the algorithm. The data set cannot be separable, using two codevectors, by means
of classical clustering algorithms such as K-Means, SOM, neural gas.

bioinformatics [65]). Besides, the consistency of spectral clustering has been
recently proven [90, 91] showing in this way that spectral clustering is theoreti-
cally well-grounded. Now, we pass to introduce spectral clustering algorithms
describing in detail the most popular clustering algorithm, namely the Ng-
Jordan algorithm [62].

Let X = (x1,...,%¢) € R™ be the data, we can build a weighted undirected
graph G starting from X where each sample is represented by means of a node.
The distance (or adjacency) a;; between two nodes x; and x; is defined by:

Wi = {h(x“xj) iz } (9.194)

0 otherwise.

The function h(-) measures the dissimilarity between data. In this framework
clustering can be viewed as a graph cut problem and the spectral theory permit
relaxing the complexity of the problem.
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For the weighted graph G we call the weight matrix W, whose elements
are provided by (9.194), the adjacency matriz (or affinity matriz) of G. Then
we define the diagonal matrix D whose generic element D;; is the sum of the
i-th row of the matrix A. Being said that, Ng-Jordan algorithm is formed by
the following steps:

1. Choose as dissimilarity function the gaussian kernel, namely h(x;,x;) =
exp(—w (0 € R) and build the affinity matrix A.

2. Compute the D matrix and construct the matrix L = D 2AD"z.

3. Compute the k largest eigenvectors of L eq,..., e, and build the matrix
E=ley,... ek

4. Compute the matrix Y from E normalizing each of rows of E in order to
have unit length, i.e the element ¢j of the matrix Y is given by:

E;j

k
2
Y E},
j=1

Y = (9.195)

5. Defining a new data set P = {pi,...,ps}, belonging to R*, which are
provided by the Y rows, namely the i-point p; is given by the the i-** row
of Y. Cluster P into k clusters using a clustering algorithm (e.g. K-Means).

6. Assign the original point x; to the cluster j iff the point p; was assigned
to the cluster j.

The Ng-Jordan algorithm has a strong analogy to the idea proposed, but not
fully investigated, by [76] in their early technical report about the Kernel
PCA. They have proposed an algorithm (kernel K-Means) which consists in
applying the kernel PCA on the data and then clustering the projected data
along the largest kernel eigenvectors by means of K-Means.

Finally, we recall that other spectral clustering approaches have been pro-
posed (see [29] for a review). In particular, we quote the Meila and Shi al-
gorithm based on the framework of Markov random walks [57] and the Shi
and Malik algorithm [79], based on the optimal partitioning of the graph by
means of the minimization of the graph cut.

9.11 Software Packages

We conclude the chapter providing a brief survey of the public domain software
packages which implement kernel methods. The most popular packages are
SVMEight - SVMTorch and LIBSVM.

SVMZ%i9ht [41] can be downloaded from svmlight.joachims.org. It im-
plements support vector for classification and for regression. It is also available
a SVM version (SVM*"u<t)[83] for multivariate and structured outputs like
trees and sequences.
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SVMTorch was developed by [15]. At present, it is integrated in the ma-
chine learning library Torch [16], which can be downloaded at www.torch. ch.
SVMTorch, written in C++, implements support vector for classification and
for regression.

LIBSVM [25], written in C++, is a public domain library for support vec-
tor machines and is downlable from www.csie.ntu.edu.tw/~cjlin/libsvm.
The library provides software for support vector machines for classification
and regression and for one-class SVM. Besides, there are available interfaces
to LIBSVM for several languages and toolboxes (e.g. R, Python and Perl).

Moreover, software packages based on mathematical toolboxes have been
developed. Kernlab [44], based on the R toolbox, and can be downloaded from
cran.r-project.org/src/contrib/Descriptions/kernlab.html.

Kernlab provides implementations of support vector machines for classi-
fication and regression, gaussian processes, Kernel PCA and spectral clus-
tering algorithms. Finally, SVM-KMToolboz [11] is a toolbox, written in
MATLAB® ? It can be downloaded from
asi.insa-rouen.fr/~arakotom/toolbox/index.html
and contains implementations of SVM for classification and regression, mul-
ticlass SVM, one-class SVM, kernel PCA and kernel discriminant analysis.

9.12 Conclusion

In this chapter we have provided an overview of kernel methods. First of
all, we have recalled the basic tools of the optimization theory, the Lagrange
multipliers and the Kuhn Tucker theorem, used in the kernel methods. Then
support vector machines for classification and regression have been presented.
Gaussian processes have been described, underlining their connection with
kernel ridge regression. The Fisher kernel discriminant has also been reviewed.
Then we have described unsupervised kernel methods, namely kernel PCA and
one-class SVM and we have concluded our survey with sketches about kernel
and spectral methods for clustering.

Kernel methods are very powerful machine learning algorithms. Neverthe-
less, their performance is strongly affected by the choice of the appropriate
kernel. The choice of the kernel is so important that it has been developed
a particular branch of the kernel method theory, called kernel engineering,
devoted to how to design appropriate kernel for a given task. In the last
years, have been designed kernel for image classification [3], for handling word
sequences [10], for string and tree matching [35][51][89], for hypertext classifi-
cation [42]. A detailed discussion on this topic is out of this topic of the book,
therefore we advise the reader interested in kernel engineering to refer specific
works on kernels such as [78].

Finally, we conclude the chapter providing some bibliographical remarks.
SVMs for classification and regression are discussed in detail in [19][74][78][86].

9 MATLAB® is a registered trademark of The Mathworks, Inc.
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A comprehensive survey of the Gaussian processes is provided by [71]. kernel
Fisher discriminant and kernel PCA are described in [75] and [58], respectively.
Spectral and kernel methods for clustering are reviewed, underlining their
connections, in [29].

Problems

9.1. Consider the function K : X x X — R, where X C R". Prove that if
K(x,y) = &(x) - &(y) then K(-) is a Mercer kernel.

9.2. Prove that the Cauchy kernel C(x,y) = a(l + ||x — y||?) is positive
definite for a > 0. (Hint: Read Appendix D).

9.3. Prove that the Epanechnikov kernel, defined by

B(z,y) = 0.75(1 — |lx = y|*)I(|x - y[| < 1) (9.196)
is conditionally positive definite. (Hint: Read Appendix D).
9.4. Prove that the optimal hyperplane is unique.

9.5. Consider the SMO algorithm for classification. What is the minimum
number of Lagrange multipliers which can be optimized in an iteration? Ex-
plain your answer.

9.6. Consider the SMO algorithm for classification. Show that in the case of
unconstrained maximum we obtain the following updating rule

y2(Ehr — Es)
2K (x1,%2) — K(x1,%x1) — K(X2,X2)

ag(t + 1) = Oé2(t) — (9197)

where E; = f(x; — ;).

9.7. Consider the data Set A of the SantaFe time series competition. Using a
public domain SVM regression package and the four preceeding values of the
time series as input, predict the actual value of the time series. The data set
A can be downloaded from http://www-psych.stanford.edu/ andreas/Time-
Series/SantaFe.html. Implement a Gaussian process for regression and repeat
the exercise replacing SVM with the Gaussian process. Discuss the results.

9.8. Using the o-v-r method and a public domain SVM binary classifier (e.g.
SVMLight or SVMTorch), test a multiclass SVM on Iris Data [31] that can
be dowloaded by fip.ics.uci.edu/pub/machine-learning-databases/iris. Repeat
the same experiment replacing the o-v-r method with the o-v-o strategy. Dis-
cuss the results.
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9.9. Implement kernel PCA and test it on a dataset (e.g. Iris Data). Use as
Mercer kernel the Gaussian and verify the Twining and Taylor’s result [84],
that is, that for large values of the variance the kernel PCA eigenspectrum
tends to PCA eigenspectrum.

9.10. Consider one-class SVM. Prove there are no bounded support vector
when the regularization constant C' is equal to 1.

9.11. Implement kernel K-Means and test your implementation on a dataset
(e.g. Iris Data). Verify that when you choose as Mercer kernel the inner prod-
uct you obtain the same results of batch K-Means.

9.12.
Implement the Ng-Jordan algorithm using a mathematical toolbox. Test your
implementation on Iris data. Compare your results with the ones reported
in [9].
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10

Markovian Models for Sequential Data

What the reader should know to understand this chapter

e Bayes decision theory (Chapter 5).
e Lagrange multipliers and conditional optimization problems (Chapter 9).
e Probability and statistics (Appendix A).

What the reader should know after reading this chapter

The three problems of hidden Markov models.
The Baum-Welch algorithm.

The Viterbi algorithm.

N-gram language modeling.

10.1 Introduction

Most of the techniques presented in this book are aimed at making decisions
about data. By data it is meant, in general, vectors representing, in some
sense, real-world objects that cannot be handled directly by computers. The
components of the vectors, the so-called features, are supposed to contain
enough information to allow a correct decision and to distinguish between
different objects (see Chapter 5). The algorithms are typically capable, after a
training procedure, of associating input vectors with output decisions. On the
other hand, in some cases real-world objects of interest cannot be represented
with a single vector because they are sequential in nature. This is the case of
speech and handwriting, which can be thought of as sequences of phonemes
(see Chapter 2) and letters, respectively, temporal series, biological sequences
(e.g. chains of proteins in DNA), natural language sentences, music, etc. The
goal of this chapter is to show how some of the techniques presented so far
for single vectors can be extended to sequential data.
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Given an observation sequence S = x¥ = {xi,...,xr}, where x; € R"
can be continuous or discrete, the problem is to provide a probability den-
sity function p(S) over the space S of the sequences. If necessary, the density
function must be of the form p(S|©), where O is a parameter set that can be
learnt from a training set containing a sufficient number of labeled sequences.
This problem has been successfully addressed in the last 20 years using the
so-called probabilistic finite state machines (PFSM) [37][38], a family of mod-
els including probabilistic finite state automata [11], Markov chains [24][29],
probabilistic suffix trees [34][33], and other models (see [23] for an extensive
survey). This chapter focuses on two particular models of the family, i.e. N-
grams [31] and hidden Markov models (HMMs) [32].

The N-grams are simple models giving the probabilities of sequences
of elements belonging to a finite alphabet. In particular, the N-grams out-
perform linguistics based approaches in modeling natural sentences [35]. The
HMDMs are one of the most commonly applied PSFM and have the particu-
larity of modeling sequences of states that cannot be observed directly, but
only through sequences of statistically related observations (see the rest of
this chapter for more details). This makes the HMMs more flexible than other
models and suitable for problems that cannot be addressed with other kinds
of PFSM [7].

The rest of this chapter is organized as follows: Section 10.2 provides the
main elements and definitions about HMMs and it explains the reason of the
introduction of the nonobservable states, Section 10.3 introduces the three
problems characterzing the use of HMMs, i.e. likelihood, decoding and learn-
ing, Sections 10.4, 10.5 and 10.6 describe the way such problems are addressed,
Section 10.7 presents different variants of the HMMs, Section 10.8 describes
the N-grams and the data sparseness problem, Section 10.9 introduces dis-
counting and smoothing techniques and Section 10.10 provides a quick tutorial
to a free package enabling one to build N-gram models.

10.2 Hidden Markov Models

In very simple terms, the music can be thought of as a sequence of notes
S = sT = {s1,...,s7} with different durations. The single elements s; can
be modeled as random variables, called state variables, which take values in a
finite set V = {vy,...,on}, ie. sy = v; VE € {1,..., T}, wherei € {1,...,N}.
Consider the case where the music score is at disposition and the sequence S
can then be accessed directly, the probability p(S) of the sequence S being
observed can be estimated with a Markov model (MM) of order k, i.e. a
probability distribution defined over sequences and based on the following
conditional independence assumption:

! The case where V is a continuous range concerns the so-called state space models
and it is out of the scope of this book. The interested reader can refer to [7] for
more details.
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p(silsi™") = p(silsi=p), (10.1)

i.e. the state variable s; depends only on the state variables sy with ¢t —¢' > k.
In other words, the state variable s; depends only on the k previous state
variables in S. As a consequence, by Equation (10.1) the distribution p(S)
can be decomposed as follows:

T
p(S) =p(s§) T[ plsilsizh)- (10.2)
t=k+1
The correct expression for the fact that s; = wvg is the state variable at

step t takes the value vi. However it is more common to say, although not
correct, that the state at step t is v, and the same convention will be applied
throughout this book.

In most cases k = 1 and the above distribution becomes:

T
p(S) :P(Sl)HP(SHStfl)a (10.3)

completely specified by the initial state probabilities p(s1) and by the transi-
tion probabilities p(s¢|s;—1). This is the most common case and the assumption
that £ = 1 is not a restriction because any k** order MM can be represented
with a first-order model by simply increasing the number of state variables. In
fact, if we consider the N* sequences s~ Equation (10.3) can be rewritten
as:

T—k+1
p(S) = p(Slfv S]2€+1’ Tt S¥fk+1) = p(slf) H p(3€+k|5§t11€72)’ (10.4)
t=2

and a k' order MM is equivalent to a first-order one.

In principle, the transition probabilities p(s¢|s;—1) depend on t; however,
this chapter focuses on cases where they are homogeneous, i.e. they do not
depend on t. This reduces significantly the number of parameters and enables
one to collect all p(s¢|s;—1) into a matrix A, called a transition matriz, such
that:

aij = p(sy = vj|si—1 = v;), (10.5)

where a;; is the element ij of A. The transition matrix determines the topology
of the MM, i.e. the structure of the graph that can be used to represent an
MM (see Figure 10.1). When a;; = 0, transitions between states v; and v;
are not allowed and no connection is established between their corresponding
nodes. When a;; > 0, the state v; can be repeated in following steps along the
sequence and the corresponding transition is called self-transition.

When a;; > 0 only for j =i or j =i+ 1, the model is called Bakis (see
upper picture in Figure 10.1), when a;; > 0 for j > 4, the model topology
is called left-right. This structure is particularly suitable for data like speech
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Fig. 10.1. Model topology. In the left-right topology (upper figure) only self-
transitions and transitions to the next state in a predefined sequence are allowed.
In the fully connected model (lower figure) all states can be reached from any other
state.

or handwriting where the sequence of states corresponds to a sequence of
letters and phonemes, respectively (see Chapters 2 and 12). When a;; > 0,
Vi,j € (1,2,...,N), the MM is said to be fully connected, and each state can
be followed by any other state. A model is said ergodic when any state can
be reached by any other state in a finite number of steps.

Consider now the case where the music score is not available and the only
information at disposition about the music is a recording, i.e. the sequence S
cannot be accessed directly and it is hidden. The only possibility of modeling
p(S ) is to extract from the sound a vector of measures x; at each time step
t (e.g. the Fourier coefficients described in Appendix B). Since measurement
devices are not perfect and the players introduce variations even when they
play the same note, the observations x corresponding to a specific state v;
are not constant, but rather follow a distribution p(x|v;) (see Figure 10.2).

As a consequence, the sequence O = x} = {x1,...,x7} hardly respects the
Markov assumption of Equation (10.1), at least for small k values. However,
T

the observation sequence xj is the effect of the underlying state sequence
s{ which respects the Markov assumption, then it is possible to make the
following simplifying assumptions:

p(xelst, x{7") = p(xelse) (10.6)
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Fig. 10.2. Hidden Markov models. The figure shows how a sequence of states and
observations is generated. The transition between the states is modeled by the tran-
sition probabilities p(si+1]s¢), while the observations are generated following the
emission probabilities p(x¢|st).

p(8t|55 Xﬁ 1) = p(st]st-1), (10.7)
i.e. the probability of the observation x; depends only on state s; and this
last depends only on state s;_;. The introduction of the hidden state sequence
enables one to model sequences of observations that do not respect directly
the Markov assumption, but are generated by piecewise stationary processes.
In the music example each note lasts for a time interval before the following
note is played. During such an interval the sound properties can be assumed
to be stationary, i.e. they do not change as much as when passing from one
note to the following one, and any form of analysis and measurement produces
observations that follow the same distribution.
Based on the independence assumptions of Equations (10.6) and (10.7),
the joint distribution of observation and state sequences can be written as
follows:

T T
p(x{,s7) =p(s1) [ p(selse-1) [ p(xelse), (10.8)
t=2 t=1
completely specified by:
e aset ™= {m =p(s1 =v1),...,78 = p(s1 = vn)} of initial state proba-

bilities.
a transition matrix A such that a;; = p(s; = vj|si—1 = v;).

e aset B = {bi(x) = p(x|v1),...,by(xX)p(x|vn)} of emission probability
functions.

The set A = {m, A, B} is called hidden Markov model because the states are
not accessible directly, but only through the observations.

10.2.1 Emission Probability Functions

The choice of the emission probability function is important because it enables
one to distinguish between discrete HMMs and continuous density (or simply
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continuous) HMMs. In the first case, the observations belong to a finite set of
symbols C' = {¢1, ¢a, . .., ¢k } and the emission probabilities can be represented
with a matrix B such that:

bij = p(xe = ¢5lse = i), (10.9)

where 1 < ¢ < N and 1 < j < K. Such an approach is especially suitable
when the observations are discrete by nature, but it can be used also when
the observations are continuous. In fact, it is possible to perform a vector
quantization (see Chapter 8) and to replace the observations with their closest
codevector. In this way, continuous observations are converted into discrete
symbols.

In the case of continuous HMMSs, the most common emission probability
function is the Gaussian mixture (GM) [9][40]:

G
1 NS
p(xilse = v;) = ZU}ijie_%(x_“”)TEUl(x Hig) (10.10)

j=1 v 2m ] 24

where w;; is a weight, d is the dimension of the observation vectors, G is the
number of Gaussians in the mixture, Y; is the covariance matrix of the gth
Gaussian of the mixture corresponding to state v; and p;; is the mean for the
same Gaussian (see Section 5.7.2 for more details). The mizture coefficients
w;; must respect two conditions: the first is that w;; > 0Vj € {1,...,G} and
the second is that E?Ll w;; = 1. When G = 1, the mixture corresponds to a
single Gaussian.

Any other continuous distribution can be used, but the GM is the most
commonly applied because it has universal approximation properties, i.e. the
GM can approximate any other distribution with an error as small as necessary
if enough Gaussians are used [30]. On the other hand, the number of Gaussians
that can be used is limited by the amount of training material available. In
fact, each Gaussian requires d?/2 + 3d/2 + 1 parameters and the amount of
material necessary to train effectively the models grows with the number of
parameters.

10.3 The Three Problems

The independence assumptions made in Section 10.2 are a key point in the
definition of the hidden Markov models. In fact, they enable one to express
probability distributions over sequences in terms of a few elements (see Sec-
tion 10.2): initial state probabilities, transition probabilities and emission
probability functions. Such assumptions do not necessarily capture the real
relationships between the data under examination (e.g. the music notes in
a song), but empirical experience shows that good results are achieved in
applications applying the decision theory framework presented in Chapter 5.
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In this perspective, there are three problems that must be addressed to
use effectively an HMM A = {mr, A, B}:

The likelihood problem. Given an observation sequence O = xI and an
HMM X\ = {m, A, B}, how do we estimate the likelihood of O given \?
The study of this problem leads to the introduction of a trellis allowing
one to compute efficiently the quantities necessary to deal not only with
the estimation of the likelihood, but also with the other two problems.

The decoding problem. Given an observation sequence O = x{ and an
HMM )\ = {m, A, B}, how do we find the sequence S = s¥ that generates
O with the highest probability?

The examination of this problem leads to the Viterbi algorithm (VA), one
of the most widely applied decoding approaches.

The learning problem. Given an observation sequence O, how do we find
the model \* = argmaxy p(O|\) that mazimizes the likelihood p(O|X) ?
The investigation of this problem leads to a particular form of the EM
technique (see Chapter 6) known as Baum Welch algorithm and is suitable
only for the HMMs.

The three problems can be addressed separately and the next subsections
describe them in detail.

10.4 The Likelihood Problem and the Trellis**

Consider a sequence of observations O = x7 and a sequence of states S = s?
governed by an HMM \. The probability of observing the sequence O when
the sequence of states is S can be written as follows:

(O, S|X) = p(O|S, \)p(S|A). (10.11)

The first term of the product can be expressed as:
p(O|S, ) Hbst (x¢), (10.12)

and requires only the emission probability functions in B.
The second term of the product in Equation (10.11) can be estimated using
initial state and transition probabilities:

T
p(S|)‘) = Tsy Hast_lst (1013)

t=2

and it requires only the transition probabilities in A.
The likelihood p(O|A) corresponds to the probability of Equation (10.11)
summed over all possible sequences:
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p(OIN) = > p(O[8, M)p(S|N), (10.14)
Ses

where S is the set of all T long sequences such that s; € V, vt € {1,...,t}. The
number of sequences in S is N7 and, even for moderate values of N and T,
it is too high to make the explicit computation of p(O|\) tractable. However,
the likelihood can be obtained at a reasonable computational cost by applying
a recursive technique based on the trellis of Figure 10.3, where each column
corresponds to a time step and each node to a state. The links correspond
to transitions leading from state s; to state s;11 and to the emission of the
observation x;,1. No links are allowed between the nodes of the same column
because the only allowed transitions are those leading to the next state and
observation. A path through the trellis corresponds to a path through the
states of an HMM, i.e. to a sequence S € S.

The key element of the technique is the forward variable oy (i) = p(x}, s =
v;|A), i.e. the probability of observing the partial sequence x} (where t < T')
having v; as state s;. The forward variable is defined by induction:

Initialization. When ¢ = 1, the forward variable is:
o (i) = mibi(x1), (10.15)

where ¢ = 1,..., N, and it corresponds to the probability of starting the
sequence with the state v; and the observation x;.

Induction. While the forward variable a4 (7) is associated to the single node
i in the first column, the forward variable as(i) must take into account
all trellis paths starting from the first column and ending at the i*"* node
of the second column:

N
(i) = lz al(k)aki] bi(x2) (10.16)
k=1

where ¢ = 1,..., N. This corresponds to summing over all links connecting
the nodes of the first columns to node 4 in the second column. The same
consideration made for as () applies to the forward variable at any point
t + 1 of the sequence:

N
Oét+1(i) = [Z at(kz)aki] bi(Xt+1), (10.17)
k=1

as shown in Figure 10.4 (left plot) where the sum in Equation (10.17) is
shown to include all paths leading to state v; at step t+ 1 in the sequence.
Termination. At the last point 7', Equation (10.17) becomes:

N
OéT(i) = [Z aTl(k)aki] bi(XT), (1018)
k=1
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i
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state
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Fig. 10.3. Trellis. In this lattice, each column corresponds to an observation and
each row corresponds to a state. A path through the trellis corresponds to a path
through the states of the HMM. The links are associated with the transitions and
no links among the elements of the same column are allowed. In fact, each transition
must lead to the next state and observation, then to the following column.
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Fig. 10.4. Forward and backward variables. The left figure shows how the forward
variable at point ¢+ 1 of the sequence is obtained by summing over all paths leading
from s; to si+1 = v;. The right figure shows how the backward variable is obtained
by summing over all paths starting from state s; = v; and leading to any other state

St+1

and this enables us to write p(O|)) as follows:

N
p(OIN) = ar(i), (10.19)
=1
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in fact, this corresponds to the sum over all paths leading to all states at
the final sequence point 7.

By applying the above recursive procedure, the number of additions and
multiplications is reduced from 2I'N7 (the case of the explicit calculation)
to TN2. In an average handwriting recognition problem (see Chapter 12), N
and T are around 50 and 100 and the number of operations using the forward
variable is around 100 orders of magnitude smaller than the one required by
the explicit computation.

10.5 The Decoding Problem™**

The goal of the decoding is to find the sequence of states S which has the
highest probability given an observation sequence O and an HMM A:

S = argmgxp(5|07)\). (10.20)

The problem is addressed by applying the Viterbi algorithm (VA) [32][39],
a dynamic programming (DP) [5] based technique using the trellis described
above. The main assuption of DP, the so-called optimality principle, states
that if the pathfrom node A to node C, optimal with respect to a given
criterion, passes through B, then also the path from B to C' is optimal with
respect to the same criterion. The VA involves two main operations:

1. To find the estimate of p(S’|O, A), i.e. of the highest probability along a
single T-long path through the states of the HMM.
2. To find the single states 1, 8s,..., 87 of S.

The first operation relies on the following variable d,(i):

01(1) = n}ai(,p(stl_l, s¢ = vi, X5 | \), (10.21)
EH

i.e. on the highest joint conditional probability along a single trellis path for

a sequence of ¢ states terminating with v;. The variable §;(i) is defined by

induction.

Initialization. When ¢ = 1, the § variable is:
51 (Z) = Wibi(xl) (1022)

where 1 <4 < N. In o